1
|
Apostolides DE, Michael G, Patrickios CS, Sakai T, Kyroglou I, Kasimatis M, Iatrou H, Prévost S, Gradzielski M. The First Example of a Model Amphiphilic Polymer Conetwork Containing a Hydrophobic Oligopeptide: The Case of End-Linked Tetra[Poly(ethylene glycol)- b-oligo( L-alanine)]. Gels 2025; 11:331. [PMID: 40422352 DOI: 10.3390/gels11050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Herein we describe the development of the first model amphiphilic polymer conetwork (APCN) comprising a short hydrophobic hexa(L-alanine) segment being the outer block of an amphiphilic four-armed star block copolymer with inner poly(ethylene glycol) (PEG) blocks bearing benzaldehyde terminal groups and end-linked with another four-armed star PEG homopolymer (tetraPEG star) bearing aryl-substituted acylhydrazide terminal groups. The present successful synthesis that yielded the peptide-containing model APCN was preceded by several unsuccessful efforts that followed different synthetic strategies. In addition to the synthetic work, we also present the structural characterization of the peptide-bearing APCN in D2O using small-angle neutron scattering (SANS).
Collapse
Affiliation(s)
| | - George Michael
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Costas S Patrickios
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Iro Kyroglou
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Maria Kasimatis
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Hermis Iatrou
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Sylvain Prévost
- Institut Max von Laue-Paul Langevin (ILL), 71 Avenue des Martyrs-CS 20156, 38042 Grenoble, France
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
2
|
Petróczy A, Szanka I, Wacha A, Varga Z, Thomann Y, Thomann R, Mülhaupt R, Bereczki L, Hegyesi N, Iván B. Bicontinuous Nanophasic Conetworks of Polystyrene with Poly(dimethylsiloxane) and Divinylbenzene: From Macrocrosslinked to Hypercrosslinked Double-Hydrophobic Conetworks and Their Organogels with Solvent-Selective Swelling. Gels 2025; 11:318. [PMID: 40422338 DOI: 10.3390/gels11050318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Polymer conetworks, which consist of two or more covalently crosslinked polymer chains, not only combine the individual characteristics of their components, but possess various unique structural features and properties as well. In this study, we report on the successful synthesis of a library of polystyrene-l-poly(dimethylsiloxane) (PSt-l-PDMS) ("l" stands for "linked by") and polystyrene-l-poly(dimethylsiloxane)/divinylbenzene (PSt-l-PDMS/DVB) polymer conetworks. These conetworks were prepared via free radical copolymerization of styrene (St) with methacryloxypropyl-telechelic poly(dimethylsiloxane) (MA-PDMS-MA) as macromolecular crosslinker in the absence and presence of DVB with 36:1 and 5:1 St/DVB ratios (m/m), the latter leading to hypercrosslinked conetworks. Macroscopically homogeneous, transparent conetworks with high gel fractions were obtained over a wide range of PDMS contents from 30 to 80 m/m%. The composition of the conetworks determined by elemental analysis was found to be in good agreement with that obtained from the 1H NMR spectra of the extraction residues, as a new method which can be widely used to easily determine the composition of multicomponent networks and gels. DSC, SAXS, and AFM measurements clearly indicate bicontinuous disordered nanophase separated morphology for all the investigated conetworks with domain sizes in the range of 3-30 nm, even for the hypercrosslinked PSt-l-PDMS/DVB conetworks with extremely high crosslinking density. The cocontinuous morphology is also proved by selective, composition-dependent uniform swelling in hexane for the PDMS and in 1-nitropropane for the PSt domains. The Korsmeyer-Peppas type evaluation of the swelling data indicates hindered Fickian diffusion of both solvents in the conetwork organogels. The unique nanophasic bicontinuous morphology and the selective swelling behavior of the PSt-l-PDMS and PSt-l-PDMS/DVB conetworks and their gels offer a range of various potential applications.
Collapse
Affiliation(s)
- Anna Petróczy
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter Sétány 2, H-1117 Budapest, Hungary
| | - István Szanka
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - András Wacha
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Yi Thomann
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Ralf Thomann
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Rolf Mülhaupt
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Laura Bereczki
- Chemical Crystallography Research Laboratory, Centre of Structural Science, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Nóra Hegyesi
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Béla Iván
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
3
|
Saini A, Sharma M, Singh I, Swami R. From Vision Correction to Drug Delivery: Unraveling the Potential of Therapeutic Contact Lens. Curr Drug Deliv 2025; 22:140-159. [PMID: 38213158 DOI: 10.2174/0115672018270396231213074746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Contact lenses (CLs) have become an essential tool in ocular drug delivery, providing effective treatment options for specific eye conditions. In recent advancements, Therapeutic CLs (TCLs) have emerged as a promising approach for maintaining therapeutic drug concentrations on the eye surface. TCLs offer unique attributes, including prolonged wear and a remarkable ability to enhance the bioavailability of loaded medications by more than 50%, thus gaining widespread usage. They have proven beneficial in pain management, medication administration, corneal healing, and protection. To achieve sustained drug delivery from TCLs, researchers are exploring diverse systems, such as polymeric nanoparticulate systems, lipidic systems, and the incorporation of agents like vitamin E or rate-limiting polymers. However, despite breakthrough successes, certain challenges persist, including ensuring drug stability during processing and manufacturing, controlling release kinetics, and biomaterial interaction, reducing protein adhesion, and addressing drug release during packaging and storage etc. While TCLs have shown overall success in treating corneal and ocular surface disorders, careful consideration of potential issues and contraindications is vital. This review offers an insightful perspective on the critical aspects that need to be addressed regarding TCLs, with a specific emphasis on their advantages and limitations.
Collapse
Affiliation(s)
- Ankush Saini
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, India
| | - Mohit Sharma
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Indu Singh
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
4
|
Romanovska A, Schmidt M, Brandt V, Tophoven J, Tiller JC. Controlling the function of bioactive worm micelles by enzyme-cleavable non-covalent inter-assembly cross-linking. J Control Release 2024; 368:15-23. [PMID: 38346504 DOI: 10.1016/j.jconrel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Drugs that form self-assembled supramolecular structures to be most-active is a promising way of creating new highly specific and active pharmaceuticals. Controlling the activity of bioactive supramolecular structures such as drug-loaded micelles is possible by both core/shell and inter-assembly cross-linking. However, if the flexibility of the assembly is mandatory for the activity cross-linking is not feasible. Thus, such structures cannot be manipulated in their activity. The present study demonstrates a novel concept to control the activity of not drug-releasing, non-cross-linked bioactive superstructures. This is achieved by formation of nanostructured nanoparticles derived by non-covalent inter-assembly cross-linking of the superstructures. This is shown on the example of amphiphilic diblock-copolymers conjugated with the antibiotic ciprofloxacin (CIP). These polymer-antibiotic conjugates form worm micelles, which greatly activate the conjugated antibiotic without releasing it. Non-covalent inter-assembly cross-linking of these CIP-worm-micelles with amphiphilic triblock copolymers terminated with lipase-cleavable esters leads to nanostructured nanoparticles that resemble cross-linked worm micelles and show an up to 135-fold lower activity than the free worm micelles. The activity of the worm-micelles can be fully recovered by cleaving the end groups of the polymeric cross-linker with lipase.
Collapse
Affiliation(s)
- Alina Romanovska
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Martin Schmidt
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Volker Brandt
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Jonas Tophoven
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Joerg C Tiller
- Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany.
| |
Collapse
|
5
|
Qin K, Shi X, Chen Y, Feng Q, Qin F, Guo R, Liu Q. Enhanced bio-affinity of magnetic QD-P(St-GMA)@Fe 3O 4 micro-particles via surface-quaternized modification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64168-64178. [PMID: 37060411 DOI: 10.1007/s11356-023-26907-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
In this work, a kind of bio-carrier quaternized-polystyrene-polyglycidyl methacrylate@Fe3O4 (QD-P(St-GMA)@Fe3O4, QD-PSGF) micro-particles was successfully prepared by modifying PSGF micro-particles through a hydrothermal method. The quaternary ammonium group and surface structure of QD-PSGF were confirmed through several characterization methods. We directly verified the efficacy of the quaternary ammonium group in promoting microbial activity due to QD-PSGF being synthesized by a hydrothermal method without changing the surface topography and pore. The bio-affinity of QD-PSGF microspheres was evaluated by bacterial adhesion and anaerobic digestion experiments. The results showed that a little quaternary ammonium group can increase bacterial adhesion by about 2-3 times and methane production by 40%. The novel developed QD-PSGF micro-particles can be a promising material as a biofilm carrier for bio-application.
Collapse
Affiliation(s)
- Kang Qin
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Ying Chen
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Quan Feng
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Fan Qin
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
6
|
Yu CH, Betrehem UM, Ali N, Khan A, Ali F, Nawaz S, Sajid M, Yang Y, Chen T, Bilal M. Design strategies, surface functionalization, and environmental remediation potentialities of polymer-functionalized nanocomposites. CHEMOSPHERE 2022; 306:135656. [PMID: 35820475 DOI: 10.1016/j.chemosphere.2022.135656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Inorganic nanoparticles (NPs) have a tunable shape, size, surface morphology, and unique physical properties like catalytic, magnetic, electronic, and optical capabilities. Unlike inorganic nanomaterials, organic polymers exhibit excellent stability, biocompatibility, and processability with a tailored response to external stimuli, including pH, heat, light, and degradation properties. Nano-sized assemblies derived from inorganic and polymeric NPs are combined in a functionalized composite form to import high strength and synergistically promising features not reflected in their part as a single constituent. These new properties of polymer/inorganic functionalized materials have led to emerging applications in a variety of fields, such as environmental remediation, drug delivery, and imaging. This review spotlights recent advances in the design and construction of polymer/inorganic functionalized materials with improved attributes compared to single inorganic and polymeric materials for environmental sustainability. Following an introduction, a comprehensive review of the design and potential applications of polymer/inorganic materials for removing organic pollutants and heavy metals from wastewater is presented. We have offered valuable suggestions for piloting, and scaling-up polymer functionalized nanomaterials using simple concepts. This review is wrapped up with a discussion of perspectives on future research in the field.
Collapse
Affiliation(s)
- Chun-Hao Yu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Uwase Marie Betrehem
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Tiantian Chen
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|