1
|
Liu Y, Wang J, Sun Z. Aromatic Biobased Polymeric Materials Using Plant Polyphenols as Sustainable Alternative Raw Materials: A Review. Polymers (Basel) 2024; 16:2752. [PMID: 39408462 PMCID: PMC11479198 DOI: 10.3390/polym16192752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
In the foreseeable future, the development of petroleum-based polymeric materials may be limited, owing to the gradual consumption of disposable resources and the increasing emphasis on environmental protection policies. Therefore, it is necessary to focus on introducing environmentally friendly renewable biobased materials as a substitute for petroleum-based feed stocks in the preparation of different types of industrially important polymers. Plant polyphenols, a kind of natural aromatic biomolecule, exist widely in some plant species. Benefiting from their special macromolecular structure, high reactivity, and broad abundance, plant polyphenols are potent candidates to replace the dwindling aromatic monomers derived from petroleum-based resources in synthesizing high-quality polymeric materials. In this review, the most related and innovative methods for elaborating novel polymeric materials from plant polyphenols are addressed. After a brief historical overview, the classification, structural characteristics, and reactivity of plant polyphenols are summarized in detail. In addition, some interesting and innovative works concerning the chemical modifications and polymerization techniques of plant polyphenols are also discussed. Importantly, the main chemical pathways to create plant polyphenol-based organic/organic-inorganic polymeric materials as well as their properties and possible applications are systematically described. We believe that this review could offer helpful references for designing multifunctional polyphenolic materials.
Collapse
Affiliation(s)
- Yang Liu
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China;
- Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management, Tianjin 300381, China
- Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China
| | - Junsheng Wang
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China;
- Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management, Tianjin 300381, China
- Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China
| | - Zhe Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Lam KY, Lee CS, Tan RYH. NIR-induced photothermal-responsive shape memory polyurethane for versatile smart material applications. RSC Adv 2024; 14:24265-24286. [PMID: 39104559 PMCID: PMC11299057 DOI: 10.1039/d4ra04754k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
Stimuli responsiveness has been an attractive feature of smart material design, allowing the chemical and physical properties of the materials to change in response to small environmental variations. The versatile shape memory polyurethane (SMPU) has been advanced into thermally-responsive SMPU, enabling its use in neurovascular stents, smart fibers for compression garments, and thermal-responsive components for aircraft and aerospace structures. While thermally-induced SMPU materials exhibit excellent shape recovery and fixity, they encounter limitations such as long response times, energy-intensive heating processes, and potential damage to heat-sensitive components, hindering their wide application. Thus, SMPU has further advanced into a photothermal-responsive material by incorporating photothermal agents into the polymer matrix, offering faster response times, compatibility with heat-sensitive materials, and enhanced mechanical properties, expanding the versatility and applicability of shape memory technology. This review focuses on the classes of NIR-induced photothermal agent used in SMPU systems, their synthesis methods, and photothermal-responsive mechanism under NIR-light, which offers a dual responsiveness to the host SMPU. The advantages and limitations of NIR-induced photothermal SMPU are reviewed, and challenges in their development are discussed.
Collapse
Affiliation(s)
- Ki Yan Lam
- Department of Pharmaceutical Chemistry, School of Pharmacy, IMU University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| | - Choy Sin Lee
- Department of Pharmaceutical Chemistry, School of Pharmacy, IMU University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| | - Rachel Yie Hang Tan
- School of Postgraduate Studies, IMU University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| |
Collapse
|
3
|
Yong Y, Liu Y, Zhang Z, Dai S, Yang X, Li F, Li Z. Shape Memory Polyurethane Composite With Fast Response to Near-Infrared Light Based on Tannic Acid-Iron and Dynamic Phenol-Carbamate Network. Macromol Rapid Commun 2024; 45:e2400105. [PMID: 38623606 DOI: 10.1002/marc.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Indexed: 04/17/2024]
Abstract
Intelligent materials derived from green and renewable bio-based materials garner widespread attention recently. Herein, shape memory polyurethane composite (PUTA/Fe) with fast response to near-infrared (NIR) light is successfully prepared by introducing Fe3+ into the tannic acid-based polyurethane (PUTA) matrix through coordination between Fe3+ and tannic acid. The results show that the excellent NIR light response ability is due to the even distribution of Fe3+ filler with good photo-thermal conversion ability. With the increase of Fe3+ content, the NIR light response shape recovery rate of PUTA/Fe composite films is significantly improved, and the shape recovery time is reduced from over 60 s to 40 s. In addition, the mechanical properties of PUTA/Fe composite film are also improved. Importantly, owing to the dynamic phenol-carbamate network within the polymer matrix, the PUTA/Fe composite film can reshape its permanent shape through topological rearrangement and show its good NIR light response shape memory performance. Therefore, PUTA/Fe composites with high content of bio-based material (TA content of 15.1-19.4%) demonstrate the shape memory characteristics of fast response to NIR light; so, it will have great potential in the application of new intelligent materials including efficient and environmentally friendly smart photothermal responder.
Collapse
Affiliation(s)
- Yong Yong
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Zetian Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Songbo Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Xiaohan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Fufen Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Zhengjun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Dai X, Li Y, Liu X, Lei Z, Yang L, Xu Q, Gao F. Biodegradable Fe( ii)/Fe( iii)-coordination-driven nanoassemblies for chemo/photothermal/chemodynamic synergistic therapy of bacterial infection. NEW J CHEM 2022. [DOI: 10.1039/d2nj03803j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study provides a novel approach for preparing biodegradable nanoassemblies with synergistic chemo/photothermal/chemodynamic performance to selectively combat bacterial infection.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zhangyi Lei
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|