1
|
Kong Y, Sun Y, Tian Z, Liu S, Li N. Metal-organic frameworks-molecularly imprinted polymers (MOF-MIP): Synthesis, properties, and applications in detection and control of microorganisms. Colloids Surf B Biointerfaces 2025; 252:114670. [PMID: 40215638 DOI: 10.1016/j.colsurfb.2025.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 05/18/2025]
Abstract
Microbial contamination poses a significant threat to human health, food safety, and the ecological environment. Its rapid spread and potential pathogenicity create an urgent global challenge for efficient detection and control. However, existing methods have several shortcomings such as traditional techniques like culture methods and polymerase chain reaction (PCR) are time-consuming, while nanomaterials and aptamers often lack selectivity, stability, and affordability. Additionally, conventional disinfectants can be inefficient, lead to drug resistance, and harm the environment. To address these challenges, developing new materials and technologies that are efficient, sensitive, and stable is crucial for microbial detection and control. In this context, metal-organic frameworks (MOF) and molecularly imprinted polymers (MIP) have emerged as promising functional materials due to their unique structural advantages. The high porosity of MOF provides ample imprinting sites for MIP, while MIP enhance selective adsorption and inactivation of target microorganisms by MOF. This synergistic combination results in a composite material that offers a novel solution for microbial detection, significantly improving sensitivity, selectivity, antibacterial efficiency, and environmental friendliness. This paper reviews the synthesis strategies of metal-organic frameworks-molecularly imprinted polymers (MOF-MIP), highlighting their structural properties and innovative applications in microbial detection, which aim to inspire researchers in related fields. Looking ahead, future advancements in material science and biotechnology are expected to lead to widespread use of MOF-MIP composites in food safety, environmental monitoring, medical diagnosis, and public health-providing robust support against microbial pollution. By studying the collaborative mechanisms of MOF and MIP while optimizing design processes will enhance precision speed cost-effectiveness in microbial detection technology significantly contributing to human health and environmental safety.
Collapse
Affiliation(s)
- Yijie Kong
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| | - Yuhan Sun
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| | - Zhengrong Tian
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| | - Sha Liu
- School of Public Health, Binzhou Medical University, Yantai 264003, China.
| | - Ning Li
- School of Public Health, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
2
|
Wei C, Feng L, Deng X, Li Y, Mei H, Guo H, Zhu J, Hu C. Application of Molecularly Imprinted Polymers in the Analysis of Explosives. Polymers (Basel) 2025; 17:1410. [PMID: 40430706 PMCID: PMC12115212 DOI: 10.3390/polym17101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
The detection of explosives is highly important for the investigation of explosion cases and public safety management. However, the detection of trace explosive residues in complex matrices remains a major challenge. Molecularly imprinted polymers (MIPs), which mimic the antigen-antibody recognition mechanism, can selectively recognize and bind target explosive molecules. They offer advantages such as high efficiency, specificity, renewability, and ease of preparation, and they have shown significant potential for the efficient extraction and highly sensitive detection of trace explosive residues in complex matrices. This review comprehensively discusses the applications of MIPs in the analysis of explosives; systematically summarizes the preparation methods; and evaluates their performance in detecting nitroaromatic explosives, nitrate esters, nitroamine explosives, and peroxide explosives. Finally, this review explores the future potential of emerging technologies in enhancing the MIP-based analysis of explosives. The aim is to support the further application of MIPs in the investigation of explosion cases and safety management, providing more effective technical solutions for public safety.
Collapse
Affiliation(s)
- Chenjie Wei
- School of Investigation, Peoples’ Public Security University of China, Beijing 100038, China; (C.W.); (L.F.)
| | - Lin Feng
- School of Investigation, Peoples’ Public Security University of China, Beijing 100038, China; (C.W.); (L.F.)
| | - Xianhe Deng
- Insititute of Forensic Science, Ministry of Public Security, Beijing 100038, China; (X.D.); (Y.L.); (H.M.); (H.G.)
| | - Yajun Li
- Insititute of Forensic Science, Ministry of Public Security, Beijing 100038, China; (X.D.); (Y.L.); (H.M.); (H.G.)
| | - Hongcheng Mei
- Insititute of Forensic Science, Ministry of Public Security, Beijing 100038, China; (X.D.); (Y.L.); (H.M.); (H.G.)
| | - Hongling Guo
- Insititute of Forensic Science, Ministry of Public Security, Beijing 100038, China; (X.D.); (Y.L.); (H.M.); (H.G.)
| | - Jun Zhu
- Insititute of Forensic Science, Ministry of Public Security, Beijing 100038, China; (X.D.); (Y.L.); (H.M.); (H.G.)
| | - Can Hu
- Insititute of Forensic Science, Ministry of Public Security, Beijing 100038, China; (X.D.); (Y.L.); (H.M.); (H.G.)
| |
Collapse
|
3
|
Mukendi MD, Salami OS, Mketo N. An In-Depth Review of Molecularly Imprinted Electrochemical Sensors as an Innovative Analytical Tool in Water Quality Monitoring: Architecture, Principles, Fabrication, and Applications. MICROMACHINES 2025; 16:251. [PMID: 40141862 PMCID: PMC11944250 DOI: 10.3390/mi16030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025]
Abstract
Molecularly imprinted electrochemical sensors (MI-ECSs) are a significant advancement in analytical techniques, especially for water quality monitoring (WQM). These sensors utilize molecular imprinting to create polymer matrices that exhibit high specificity and affinity for target analytes. MI-ECSs integrate molecularly imprinted polymers (MIPs) with electrochemical transducers (ECTs), enabling the selective recognition and quantification of contaminants. Their design features template-shaped cavities in the polymer that mimic the functional groups, shapes, and sizes of target analytes, resulting in enhanced binding interactions and improved sensor performance in complex water environments. The fabrication of MI-ECSs involves selecting suitable monomeric units (monomers) and crosslinkers, using a target analyte as a template, polymerizing, and then removing the template to expose the imprinted sites. Advanced methodologies, such as electropolymerization and surface imprinting, are used to enhance their sensitivity and reproducibility. MI-ECSs offer considerable benefits, including high selectivity, low detection limits, rapid response times, and the potential for miniaturization and portability. They effectively assess and detect contaminants, like (toxic) heavy metals (HMs), pesticides, pharmaceuticals, and pathogens, in water systems. Their ability for real-time monitoring makes them essential for ensuring water safety and adhering to regulations. This paper reviews the architecture, principles, and fabrication processes of MI-ECSs as innovative strategies in WQM and their application in detecting emerging contaminants and toxicants (ECs and Ts) across various matrices. These ECs and Ts include organic, inorganic, and biological contaminants, which are mainly anthropogenic in origin and have the potential to pollute water systems. Regarding this, ongoing advancements in MI-ECS technology are expected to further enhance the analytical capabilities and performances of MI-ECSs to broaden their applications in real-time WQM and environmental monitoring.
Collapse
Affiliation(s)
| | | | - Nomvano Mketo
- Department of Chemistry, College of Science, Engineering and Technology (CSET), University of South Africa, The Science Campus, Florida Park, Corner Christian de Wet and Pioneer Avenue, Florida 1709, South Africa; (M.D.M.); (O.S.S.)
| |
Collapse
|
4
|
Gavrila AM, Diacon A, Iordache TV, Rotariu T, Ionita M, Toader G. Hazardous Materials from Threats to Safety: Molecularly Imprinted Polymers as Versatile Safeguarding Platforms. Polymers (Basel) 2024; 16:2699. [PMID: 39408411 PMCID: PMC11478541 DOI: 10.3390/polym16192699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Hazards associated with highly dangerous pollutants/contaminants in water, air, and land resources, as well as food, are serious threats to public health and the environment. Thus, it is imperative to detect or decontaminate, as risk-control strategies, the possible harmful substances sensitively and efficiently. In this context, due to their capacity to be specifically designed for various types of hazardous compounds, the synthesis and use of molecularly imprinted polymers (MIPs) have become widespread. By molecular imprinting, affinity sites with complementary shape, size, and functionality can be created for any template molecule. MIPs' unique functions in response to external factors have attracted researchers to develop a broad range of MIP-based sensors with increased sensitivity, specificity, and selectivity of the recognition element toward target hazardous compounds. Therefore, this paper comprehensively reviews the very recent progress of MIPs and smart polymer applications for sensing or decontamination of hazardous compounds (e.g., drugs, explosives, and biological or chemical agents) in various fields from 2020 to 2024, providing researchers with a rapid tool for investigating the latest research status.
Collapse
Affiliation(s)
- Ana-Mihaela Gavrila
- National Institute for Research, Development in Chemistry and Petrochemistry ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.-M.G.); (T.-V.I.)
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (A.D.); (T.R.)
| | - Tanta-Verona Iordache
- National Institute for Research, Development in Chemistry and Petrochemistry ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.-M.G.); (T.-V.I.)
| | - Traian Rotariu
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (A.D.); (T.R.)
| | - Mariana Ionita
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest (UNSTPB), Gheorghe Polizu 1-7, 011061 Bucharest, Romania;
| | - Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (A.D.); (T.R.)
| |
Collapse
|
5
|
Akhtarian S, Kaur Brar S, Rezai P. Electrochemical Impedance Spectroscopy-Based Microfluidic Biosensor Using Cell-Imprinted Polymers for Bacteria Detection. BIOSENSORS 2024; 14:445. [PMID: 39329820 PMCID: PMC11429591 DOI: 10.3390/bios14090445] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
The rapid and sensitive detection of bacterial contaminants using low-cost and portable point-of-need (PoN) biosensors has gained significant interest in water quality monitoring. Cell-imprinted polymers (CIPs) are emerging as effective and inexpensive materials for bacterial detection as they provide specific binding sites designed to capture whole bacterial cells, especially when integrated into PoN microfluidic devices. However, improving the sensitivity and detection limits of these sensors remains challenging. In this study, we integrated CIP-functionalized stainless steel microwires (CIP-MWs) into a microfluidic device for the impedimetric detection of E. coli bacteria. The sensor featured two parallel microchannels with three-electrode configurations that allowed simultaneous control and electrochemical impedance spectroscopy (EIS) measurements. A CIP-MW and a non-imprinted polymer (NIP)-MW suspended perpendicular to the microchannels served as the working electrodes in the test and control channels, respectively. Electrochemical spectra were fitted with equivalent electrical circuits, and the charge transfer resistances of both cells were measured before and after incubation with target bacteria. The charge transfer resistance of the CIP-MWs after 30 min of incubation with bacteria was increased. By normalizing the change in charge transfer resistance and analyzing the dose-response curve for bacterial concentrations ranging from 0 to 107 CFU/mL, we determined the limits of detection and quantification as 2 × 102 CFU/mL and 1.4 × 104 CFU/mL, respectively. The sensor demonstrated a dynamic range of 102 to 107 CFU/mL, where bacterial counts were statistically distinguishable. The proposed sensor offers a sensitive, cost-effective, durable, and rapid solution for on-site identification of waterborne pathogens.
Collapse
Affiliation(s)
- Shiva Akhtarian
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Satinder Kaur Brar
- Department of Civil Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|
6
|
Quezada C, Samhitha SS, Salas A, Ges A, Barraza LF, Blanco-López MC, Solís-Pomar F, Pérez-Tijerina E, Medina C, Meléndrez M. Sensors Based on Molecularly Imprinted Polymers in the Field of Cancer Biomarker Detection: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1361. [PMID: 39195399 DOI: 10.3390/nano14161361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024]
Abstract
Biomarkers play a pivotal role in the screening, diagnosis, prevention, and post-treatment follow-up of various malignant tumors. In certain instances, identifying these markers necessitates prior treatment due to the complex nature of the tumor microenvironment. Consequently, advancing techniques that exhibit selectivity, specificity, and enable streamlined analysis hold significant importance. Molecularly imprinted polymers (MIPs) are considered synthetic antibodies because they possess the property of molecular recognition with high selectivity and sensitivity. In recent years, there has been a notable surge in the investigation of these materials, primarily driven by their remarkable adaptability in terms of tailoring them for specific target molecules and integrating them into diverse analytical technologies. This review presents a comprehensive analysis of molecular imprinting techniques, highlighting their application in developing sensors and analytical methods for cancer detection, diagnosis, and monitoring. Therefore, MIPs offer great potential in oncology and show promise for improving the accuracy of cancer screening and diagnosis procedures.
Collapse
Affiliation(s)
- Camila Quezada
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Edmundo Larenas 315, Box 160-C, Concepción 4070409, Chile
| | - S Shiva Samhitha
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Edmundo Larenas 315, Box 160-C, Concepción 4070409, Chile
| | - Alexis Salas
- Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, 219 Edmundo Larenas, Concepción 4070409, Chile
| | - Adrián Ges
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Edmundo Larenas 315, Box 160-C, Concepción 4070409, Chile
| | - Luis F Barraza
- Department of Biological and Chemical Sciences, Faculty of Medicine and Science, Universidad San Sebastián, General Lagos 1163, Valdivia 5090000, Chile
| | - María Carmen Blanco-López
- Department of Physical and Analytical Chemistry, Asturias Biotechnology Institute, University of Oviedo, 33006 Oviedo, Spain
| | - Francisco Solís-Pomar
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Mexico
| | - Eduardo Pérez-Tijerina
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Mexico
| | - Carlos Medina
- Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, 219 Edmundo Larenas, Concepción 4070409, Chile
| | - Manuel Meléndrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4060000, Chile
| |
Collapse
|
7
|
Karrat A, Amine A. Innovative approaches to suppress non-specific adsorption in molecularly imprinted polymers for sensing applications. Biosens Bioelectron 2024; 250:116053. [PMID: 38266615 DOI: 10.1016/j.bios.2024.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic antibodies developed to bind selectively with specific molecules. They function through a particular recognition process involving their cavities and functional groups. Nevertheless, functional groups located outside these cavities are the main cause of non-specific molecule binding, thus reducing the effectiveness of MIPs in sensing applications. This work focused on enhancing the selectivity and performance of MIPs through electrostatic modification with surfactants. The study investigates the use of two surfactants, namely sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB), to eliminate non-specific adsorption in MIPs. The binding isotherms of the target molecule sulfamethoxazole (SMX) on MIPs and non-imprinted polymers (NIPs) were analyzed, showing higher adsorption capacity of MIPs due to the specific cavities. The modification with SDS or CTAB effectively eliminated non-specific adsorption in MIPs. The kinetic adsorption behavior further demonstrated the efficacy of MIP+--SDS/CTAB in the selective adsorption of SMX. Calibration curves showcase the methodology's analytical capabilities, achieving low limit of detection for SMX 6 ng mL-1 using MIP +-SDS. The stability study confirmed that the developed MIP +/--SDS/CTAB remains stable even at high temperatures, demonstrating its suitability for on-site applications. The methodology was successfully applied to detect SMX in milk and water samples, achieving promising recoveries. Overall, the electrostatic modification of MIPs with surfactants emerges as a valuable strategy for enhancing selectivity and performance in target molecule recognition and detection.
Collapse
Affiliation(s)
- Abdelhafid Karrat
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, B.P. 146 Mohammedia, Morocco
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, B.P. 146 Mohammedia, Morocco.
| |
Collapse
|
8
|
Doostmohammadi A, Youssef K, Akhtarian S, Kraft G, Rezai P. Fluorescent bacteria detection in water using cell imprinted polymer (CIP) coated microparticles in a magnetophoretic microfluidic device. Talanta 2024; 268:125290. [PMID: 37839327 DOI: 10.1016/j.talanta.2023.125290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Molecular imprinting has advanced towards synthesizing whole-cell imprints of microorganisms such as bacteria on various sensor surfaces including wire electrodes, quartz crystal microbalances, and microparticles (MPs). We recently introduced cell-imprinted polymers (CIPs) coated on MPs, called CIP-MPs, for bacteria recovery from water. In this paper, we have advanced towards rapid fluorometric Escherichia coli (E. coli) detection by applying fluorescent magnetic CIP-MPs, which were captured by soft ferromagnetic microstructures integrated into a microfluidic channel. The shape of ferromagnetic microstructures was optimized numerically to enhance the magnetophoretic accumulation of CIP-MPs in the microchannel. The device was then fabricated and the flow rate required to enhance bacteria capturing efficiency by CIP-MPs was determined. Decreasing the flow rate reduced the flow-induced drag and increased the interactions between the bacteria and imprinted CIP cavities. Fluorescent imaging of the accumulated CIP-MPs was done before and after bacteria capturing to quantify the changes in the fluorescence intensity as E. coli cells were captured by CIP-MPs in the microchannel. The dose-response curve of the sensor at 0-109 CFU/mL bacterial counts was obtained. Using the 3- and 10-sigma methods on the dose-response curve, the limits of detection (LOD) and quantification (LOQ) of the sensor were determined to be 4 × 102 and 3 × 103 CFU/mL, respectively, within a dynamic range of 102-107 CFU/mL. Lastly, the specificity of the CIP-MPbased sensor towards E. coli was tested and confirmed using Sarcina as a non-specific target bacterium. In summary, our developed sensor offers a promising approach for rapid and low-cost detection of bacteria in water and is suitable for development of portable and durable all-polymeric sensors for point-of-need detection.
Collapse
Affiliation(s)
| | - Khaled Youssef
- Department of Mechanical Engineering, York University, ON, Canada
| | - Shiva Akhtarian
- Department of Mechanical Engineering, York University, ON, Canada
| | | | - Pouya Rezai
- Department of Mechanical Engineering, York University, ON, Canada.
| |
Collapse
|
9
|
Silva-Neto OC, Felix CSA, de Oliveira Aguiar L, Dos Santos MB, Cunha S, David JM. Microwave extraction and molecular imprinted polymer isolation of bergenin applied to the dendrochronological chemical study of Peltophorum dubium. BMC Chem 2024; 18:13. [PMID: 38218834 PMCID: PMC10788031 DOI: 10.1186/s13065-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
This study describes methodologies for extracting and isolating bergenin, a C-glucoside of 4-O-methylgallic acid found in some plants and it presents various in vitro and in vivo biological activities. Bergenin was previously obtained from the Pelthophorum dubim (Fabaceae) roots with a good yield. Conventional chromatographic procedures of the CHCl3 soluble fraction of the MeOH extract gave 3.62% of this glucoside. An HPLC/DAD method was also developed and validated for bergenin and its precursor, gallic acid quantifications. Microwave extractions with different solvents were tested to optimize the extraction of bergenin, varying the temperature and time. MAE (Microwave Assisted Extraction) was more efficient than conventional extraction procedures, giving a higher yield of bergenin per root mass (0.45% vs. 0.0839%). Molecularly imprinted polymer (MIP) and non-imprinted polymer (NIP) based on bergenin as the template molecule, methacrylic acid, and ethylene glycol dimethacrylate were synthesized and characterized by FTIR and SEM (Scanning Electron Microscopy). Bergenin adsorption experiments using MIP and NIP followed by molecular imprinted solid phase extraction (MISPE) showed that MIP had a higher selectivity for bergenin than NIP. A dendrochronological study using the proposed method for detection and quantification of gallic acid and bergenin in five P. dubium growth rings of a 31-year-old heartwood and in the phelloderm and barks indicated that bergenin was more abundant in the 11-14th growth rings of the heartwood and decreased from the heartwood to the barks.
Collapse
Affiliation(s)
- Oscar Caetano Silva-Neto
- Instituto de Química, Universidade Federal da Bahia Campus Ondina, Salvador, BA, 40170280, Brazil
| | - Caio Silva Assis Felix
- Instituto de Química, Universidade Federal da Bahia Campus Ondina, Salvador, BA, 40170280, Brazil
| | | | | | - Silvio Cunha
- Instituto de Química, Universidade Federal da Bahia Campus Ondina, Salvador, BA, 40170280, Brazil
| | - Jorge Mauricio David
- Instituto de Química, Universidade Federal da Bahia Campus Ondina, Salvador, BA, 40170280, Brazil.
| |
Collapse
|
10
|
Erdoğan NÖ, Uslu B, Aydoğdu Tığ G. Development of an electrochemical biosensor utilizing a combined aptamer and MIP strategy for the detection of the food allergen lysozyme. Mikrochim Acta 2023; 190:471. [PMID: 37975892 DOI: 10.1007/s00604-023-06054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
This study aims to develop a MIP-Apt-based electrochemical biosensor for the sensitive and selective determination of Lysozyme (Lyz), a food allergen. For the development of the sensor, in the first stage, modifications were made to the screen-printed electrode (SPE) surface with graphene oxide (GO) and gold nanoparticles (AuNPs) to increase conductivity and surface area. The advantages of using aptamer (Apt) and molecularly imprinted polymer (MIP) technology were combined in a single biointerface in the prepared sensing tool. Surface characterization of the biosensor was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS), contact angle measurements, cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). A wide linear range from 0.001 to 100 pM was obtained under optimized conditions for the determination of Lyz detection using the proposed MIP-Apt sensing strategy. The limit of detection (LOD) and limit of quantification (LOQ) for Lyz were 3.67 fM and 12 fM, respectively. This biosensor displays high selectivity, repeatability, reproducibility, and long storage stability towards Lyz detection. The results show that a sensitive and selective sensor fabrication is achieved compared with existing methods.
Collapse
Affiliation(s)
- Niran Öykü Erdoğan
- Faculty of Science, Department of Chemistry, Ankara University, 06100, Ankara, Turkey
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, Turkey
| | - Bengi Uslu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey
| | - Gözde Aydoğdu Tığ
- Faculty of Science, Department of Chemistry, Ankara University, 06100, Ankara, Turkey.
| |
Collapse
|
11
|
Akhtarian S, Doostmohammadi A, Archonta DE, Kraft G, Brar SK, Rezai P. Microfluidic Sensor Based on Cell-Imprinted Polymer-Coated Microwires for Conductometric Detection of Bacteria in Water. BIOSENSORS 2023; 13:943. [PMID: 37887136 PMCID: PMC10605092 DOI: 10.3390/bios13100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The rapid, inexpensive, and on-site detection of bacterial contaminants using highly sensitive and specific microfluidic sensors is attracting substantial attention in water quality monitoring applications. Cell-imprinted polymers (CIPs) have emerged as robust, cost-effective, and versatile recognition materials with selective binding sites for capturing whole bacteria. However, electrochemical transduction of the binding event to a measurable signal within a microfluidic device to develop easy-to-use, compact, portable, durable, and affordable sensors remains a challenge. For this paper, we employed CIP-functionalized microwires (CIP-MWs) with an affinity towards E. coli and integrated them into a low-cost microfluidic sensor to measure the conductometric transduction of CIP-bacteria binding events. The sensor comprised two CIP-MWs suspended perpendicularly to a PDMS microchannel. The inter-wire electrical resistance of the microchannel was measured before, during, and after exposure of CIP-MWs to bacteria. A decline in the inter-wire resistance of the sensor after 30 min of incubation with bacteria was detected. Resistance change normalization and the subsequent analysis of the sensor's dose-response curve between 0 to 109 CFU/mL bacteria revealed the limits of detection and quantification of 2.1 × 105 CFU/mL and 7.3 × 105 CFU/mL, respectively. The dynamic range of the sensor was 104 to 107 CFU/mL where the bacteria counts were statistically distinguishable from each other. A linear fit in this range resulted in a sensitivity of 7.35 μS per CFU/mL. Experiments using competing Sarcina or Listeria cells showed specificity of the sensor towards the imprinted E. coli cells. The reported CIP-MW-based conductometric microfluidic sensor can provide a cost-effective, durable, portable, and real-time solution for the detection of pathogens in water.
Collapse
Affiliation(s)
- Shiva Akhtarian
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada; (S.A.); (A.D.)
| | - Ali Doostmohammadi
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada; (S.A.); (A.D.)
| | - Daphne-Eleni Archonta
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada; (S.A.); (A.D.)
| | - Garrett Kraft
- Sixth Wave Innovations Inc., Halifax, NS B4A 0H3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada; (S.A.); (A.D.)
| |
Collapse
|
12
|
Akgönüllü S, Denizli A. Molecular imprinting-based sensors: Lab-on-chip integration and biomedical applications. J Pharm Biomed Anal 2023; 225:115213. [PMID: 36621283 DOI: 10.1016/j.jpba.2022.115213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
The innovative technology of a marketable lab-on-a-chip platform for point-of-care (POC) in vitro detection has recently attracted remarkable attention. The POC tests can significantly enhance the high standard of medicinal care. In the last decade, clinical diagnostic technology has been broadly advanced and successfully performed in several areas. It seems that lab-on-a-chip approaches play a significant role in these technologies. However, high-cost and time-consuming methods are increasing the challenge and the development of a cost-effective, rapid and efficient method for the detection of biomolecules is urgently needed. Recently, polymer-coated sensing platforms have been a promising area that can be employed in medical diagnosis, pharmaceutical bioassays, and environmental monitoring. The designed on-chip sensors are based on molecular imprinting polymers (MIPs) that use label-free detection technology. Molecular imprinting shines out as a potentially promising technique for creating artificial recognition material with molecular recognition sites. MIPs provide unique advantages such as excellent recognition specificity, high selectivity, and good reusability. This review article aims to define several methods using molecular imprinting for biomolecules and their incorporation with several lab-on-chip technologies to describe the most promising methods for the development of sensing systems based on molecularly imprinted polymers. The higher selectivity, more user-friendly operation is believed to provide MIP-based lab-on-a-chip devices with great potential academic and commercial value in on-site clinical diagnostics and other point-of-care assays.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|