1
|
Abushammala H, Mao J. Novel Electrically Conductive Cellulose Nanocrystals with a Core-Shell Nanostructure Towards Biodegradable Electronics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:782. [PMID: 36839149 PMCID: PMC9963035 DOI: 10.3390/nano13040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Electronic waste (e-waste) is the fastest growing waste stream and its negative impact on the environment and human health is major because of the toxicity and non-biodegradability of its constituents. For their biodegradability and nontoxicity, bio-based materials have been proposed as potential material candidates in the field of electronics. Among these, cellulose nanocrystals (CNCs) have many interesting properties including biodegradability, high mechanical strength, and possibility to functionalize. In terms of electrical properties, CNCs are electrically insulated, limiting their potential in electronics. This work aims to build up a poly(o-toluidine)-like shell around the CNCs to render them conductive. For this goal, the surface of the CNCs was carbamated using 2,4-toluene diisocyanate through the para-isocyanates and the ortho-isocyanates were later hydrolyzed to amine groups using HCl-acidified dimethylsulfoxide. The resultant o-toluidine-like molecules on the CNC surface were then polymerized using ammonium persulfate to form an electrically conductive shell around each CNC. The resultant CNCs were then characterized for their chemical, morphological, and electrical properties. Fourier-transform infrared analysis of the CNCs at each stage confirmed the expected chemical changes upon carbamation, hydrolysis, and polymerization and X-ray diffraction confirmed the permanence of the native crystalline structure of the CNCs. The atomic force microscopy images showed that the obtained CNCs were on average slightly thicker than the original ones, possibly due to the growth of the poly(o-toluidine) shell around them. Finally, using the four-point method, the obtained CNCs were electrically conductive with a conductivity of 0.46 S/cm. Such novel electrically conductive CNCs should have great potential in a wide range of applications including electronics, sensing, and medicine.
Collapse
Affiliation(s)
- Hatem Abushammala
- Environmental Health and Safety Program, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
- Fraunhofer Institute for Wood Research (WKI), Bienroder Weg 54E, 38108 Braunschweig, Germany
| | - Jia Mao
- Fraunhofer Institute for Wood Research (WKI), Bienroder Weg 54E, 38108 Braunschweig, Germany
- Department of Mechanical Engineering, Al Ghurair University, International Academic City, Dubai P.O. Box 37374, United Arab Emirates
| |
Collapse
|
2
|
Chen G, Hong FF, Yuan J, Li L, Fang M, Wei W, Wang X, Wei Y. Super solvent of cellulose with extra high solubility for tunable cellulose structure with versatile application. Carbohydr Polym 2022; 296:119917. [DOI: 10.1016/j.carbpol.2022.119917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
|
3
|
Meftahi A, Samyn P, Geravand SA, Khajavi R, Alibkhshi S, Bechelany M, Barhoum A. Nanocelluloses as skin biocompatible materials for skincare, cosmetics, and healthcare: Formulations, regulations, and emerging applications. Carbohydr Polym 2022; 278:118956. [PMID: 34973772 DOI: 10.1016/j.carbpol.2021.118956] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/01/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023]
Abstract
Nowadays, skin biocompatible products are fast-growing markets for nanocelluloses with increasing number of patents published in last decade. This review highlights recent developments, market trends, safety assessments, and regulations for different nanocellulose types (i.e. nanoparticles, nanocrystals, nanofibers, nanoyarns, bacterial nanocellulose) used in skincare, cosmetics, and healthcare. The specific properties of nanocelluloses for skincare include high viscosity and shear thinning properties, surface functionality, dispersion stability, water-holding capacity, purity, and biocompatibility. Depending on their morphology (e.g. size, aspect ratio, geometry, porosity), nanocelluloses can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. Nanocellulose composite particles were recently developed as carriers for bioactive compounds or UV-blockers and platforms for wound healing and skin sensors. As toxicological assessment depends on morphologies and intrinsic properties, stringent regulation is needed from the testing of efficient nanocellulose dosages. The challenges and perspectives for an industrial breakthrough are related to optimization of production and processing conditions.
Collapse
Affiliation(s)
- Amin Meftahi
- Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran; Nanotechnology Research Center, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Pieter Samyn
- Institute for Materials Research (IMO-IMOMEC), Applied and Circular Chemistry, University Hasselt, 3500 Hasselt, Belgium
| | - Sahar Abbasi Geravand
- Department of Technical & Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Khajavi
- Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, 34730 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt; School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland.
| |
Collapse
|
4
|
Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup. Polymers (Basel) 2021; 13:polym13162739. [PMID: 34451277 PMCID: PMC8400096 DOI: 10.3390/polym13162739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022] Open
Abstract
Recent developments in the application of lignocellulosic materials for oil spill removal are discussed in this review article. The types of lignocellulosic substrate material and their different chemical and physical modification strategies and basic preparation techniques are presented. The morphological features and the related separation mechanisms of the materials are summarized. The material types were classified into 3D-materials such as hydrophobic and oleophobic sponges and aerogels, or 2D-materials such as membranes, fabrics, films, and meshes. It was found that, particularly for 3D-materials, there is a clear correlation between the material properties, mainly porosity and density, and their absorption performance. Furthermore, it was shown that nanocellulosic precursors are not exclusively suitable to achieve competitive porosity and therefore absorption performance, but also bulk cellulose materials. This finding could lead to developments in cost- and energy-efficient production processes of future lignocellulosic oil spillage removal materials.
Collapse
|
5
|
Abushammala H, Mao J. A Review on the Partial and Complete Dissolution and Fractionation of Wood and Lignocelluloses Using Imidazolium Ionic Liquids. Polymers (Basel) 2020; 12:E195. [PMID: 31940847 PMCID: PMC7023464 DOI: 10.3390/polym12010195] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 01/30/2023] Open
Abstract
Ionic liquids have shown great potential in the last two decades as solvents, catalysts, reaction media, additives, lubricants, and in many applications such as electrochemical systems, hydrometallurgy, chromatography, CO2 capture, etc. As solvents, the unlimited combinations of cations and anions have given ionic liquids a remarkably wide range of solvation power covering a variety of organic and inorganic materials. Ionic liquids are also considered "green" solvents due to their negligible vapor pressure, which means no emission of volatile organic compounds. Due to these interesting properties, ionic liquids have been explored as promising solvents for the dissolution and fractionation of wood and cellulose for biofuel production, pulping, extraction of nanocellulose, and for processing all-wood and all-cellulose composites. This review describes, at first, the potential of ionic liquids and the impact of the cation/anion combination on their physiochemical properties and on their solvation power and selectivity to wood polymers. It also elaborates on how the dissolution conditions influence these parameters. It then discusses the different approaches, which are followed for the homogeneous and heterogeneous dissolution and fractionation of wood and cellulose using ionic liquids and categorize them based on the target application. It finally highlights the challenges of using ionic liquids for wood and cellulose dissolution and processing, including side reactions, viscosity, recyclability, and price.
Collapse
Affiliation(s)
- Hatem Abushammala
- Fraunhofer Institute for Wood Research (WKI), Bienroder Weg 54E, 38108 Braunschweig, Germany
| | - Jia Mao
- Department of Mechanical Engineering, Al-Ghurair University, Dubai International Academic City, Dubai P.O. Box 37374, UAE;
| |
Collapse
|