1
|
Shin Y, Cho S, Yun H, Chung W. Correlation Analysis between Strength and Defect of Nano-Cementitious Composites using Ultrasonic Pulse Velocity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1183. [PMID: 37049279 PMCID: PMC10097245 DOI: 10.3390/nano13071183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Recently, researchers are conducting studies to improve the mechanical and chemical properties of cementitious composites mixed with nanomaterials. Defects may occur inside nano-cementitious composites due to nanomaterial agglomeration in the manufacturing process. These defects can degrade the mechanical performance of the nano-cementitious composite. This study performs ultrasonic non-destructive and compressive strength tests according to the size of defects in nano-cementitious composites. Multi-walled carbon nanotubes (MWCNTs) were used for the nanomaterial, and internal defects of various sizes were considered in the center of the specimens. Ultrasonic pulse velocity was measured according to the defect size until 30 curing days, after which the compressive strength was measured. The ultrasonic pulse velocity of the nano-cementitious composites decreased by up to 9.6% in relation to that of the specimens without defects as the defect size increased, and the compressive strength decreased by up to 35.7%. This study's findings revealed a correlation between ultrasonic pulse velocity and compressive strength according to defect size. Future ultrasonic non-destructive tests will allow for the prediction of mechanical performance and the detection of defects within nano-cementitious composites.
Collapse
|
2
|
Laura EC, Rafael C, Jorge QO, Harvi Alirio CC, Laura Victoria RR, Elisabeth RP. Effects of Molarity and Storage Time of MWCNTs on the Properties of Cement Paste. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9035. [PMID: 36556845 PMCID: PMC9785388 DOI: 10.3390/ma15249035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, nanomaterials in cement pastes are among the most important topics in the cement industry because they can be used for several applications. For this reason, this work presents a study about the influence of changing the molarity of dispersed multiple wall carbon nanotubes (MWCNTs) and varying the number of storage days on the mechanical properties of the cement paste. To achieve this objective, dispersions of 0.35% MWCNTs, varying the molarity of the surfactant as 10 mM, 20 mM, 40 mM, 60 mM, 80 mM, and 100 mM, were performed. The mixture of materials was developed using the sonication process; furthermore, materials were analyzed using UV-Vis, Z-potential, and Raman spectroscopy techniques. Materials with a molarity of 10 mM exhibited the best results, allowing them to also be stored for four weeks. Regarding the mechanical properties, an increase in the elastic modulus was observed when MWCNTs were included in the cement paste for all storage times. The elastic modulus and the maximum stress increased as the storage time increased.
Collapse
Affiliation(s)
- Echeverry-Cardona Laura
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia, Sede Manizales, Manizales 170001, Colombia
| | - Cabanzo Rafael
- Laboratorio de Espectroscopía Atómica y Molecular (LEAM), Centro de Materiales y Nanociencias (CMN), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, Bucaramanga 681012, Colombia
| | - Quintero-Orozco Jorge
- Ciencia de Materiales Biológicos y Semiconductores (CIMBIOS), Centro de Materiales y Nanociencias (CMN), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, Bucarmanga 681012, Colombia
| | - Castillo-Cuero Harvi Alirio
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana Ensenada, Ensenada 22860, Mexico
| | | | - Restrepo-Parra Elisabeth
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia, Sede Manizales, Manizales 170001, Colombia
| |
Collapse
|
3
|
A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Li P, Liu J, Her S, Zal Nezhad E, Lim S, Bae S. Synthesis of Highly-Dispersed Graphene Oxide Nanoribbons-Functionalized Carbon Nanotubes-Graphene Oxide (GNFG) Complex and Its Application in Enhancing the Mechanical Properties of Cementitious Composites. NANOMATERIALS 2021; 11:nano11071669. [PMID: 34201941 PMCID: PMC8307864 DOI: 10.3390/nano11071669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/30/2023]
Abstract
In this study, a graphene oxide nanoribbons–functionalized carbon nanotubes–graphene oxide (GNFG) complex was hydrothermally synthesized as a nanomaterial for reinforcing cementitious composites, using a modified Hummers’ method. Three types of components existed in the GNFG: Type I, the functionalized carbon nanotubes–graphene oxide nanoribbons (FCNTs–GNR); and types II and III are graphene oxide (GO) and functionalized carbon nanotubes (FCNTs), respectively, which exist independently. The dispersivity of GNFG and its effects on the mechanical properties, hydration process, and microstructures of cement pastes were evaluated, and the results were compared with those using cement pastes incorporating other typical carbon nanomaterials. The results demonstrated that dispersion of GNFG in aqueous solutions was superior to that of the CNTs, FCNTs, and GO/FCNTs mixture. Furthermore, the highly-dispersed GNFG (0.05 wt.%) improved the mechanical properties of the cement paste after 28 days of hydration and promoted the hydration of cement compared to CNTs, GO, and GO/FCNTs mixture (0.05 wt.%). The results in this study validated the feasibility of using GNFG with enhanced dispersion as a new nano-reinforcing agent for various cementitious systems.
Collapse
Affiliation(s)
- Peiqi Li
- Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea; (P.L.); (J.L.); (S.H.)
| | - Junxing Liu
- Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea; (P.L.); (J.L.); (S.H.)
| | - Sungwun Her
- Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea; (P.L.); (J.L.); (S.H.)
| | - Erfan Zal Nezhad
- Department of Biomedical Engineering, University of Texas, San Antonio, TX 78249, USA;
| | - Seungmin Lim
- Department of Architecture, Kangwon National University, Chuncheon 24341, Korea;
| | - Sungchul Bae
- Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea; (P.L.); (J.L.); (S.H.)
- Correspondence:
| |
Collapse
|
5
|
Echeverry-Cardona LM, Álzate N, Restrepo-Parra E, Ospina R, Quintero-Orozco JH. Time-Stability Dispersion of MWCNTs for the Improvement of Mechanical Properties of Portland Cement Specimens. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4149. [PMID: 32961838 PMCID: PMC7560393 DOI: 10.3390/ma13184149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/26/2022]
Abstract
This study shows the energy optimization and stabilization in the time of solutions composed of H2O + TX-100 + Multi-Wall Carbon Nanotubes (MWCNTs), used to improve the mechanical properties of Portland cement pastes. For developing this research, sonication energies at 90, 190, 290, 340, 390, 440, 490 and 590 J/g are applied to a colloidal substance (MWCNTs/TX-100 + H2O) with a molarity of 10 mM. Raman spectroscopy analyses showed that, for energies greater than 440 J/g, there are ruptures and fragmentation of the MWCNTs; meanwhile at energies below 390 J/g, better dispersions are obtained. The stability of the dispersion over time was evaluated over 13 weeks using UV-vis spectroscopy and Zeta Potential. With the most relevant data collected, sonication energies of 190, 390 and 490 J/g, at 10 mM were selected at the first and the fourth week of storage to obtain Portland cement specimens. Finally, we found an improvement of the mechanical properties of the samples built with Portland cement and solutions stored for one and four weeks; it can be concluded that the MWCNTs improved the hydration period.
Collapse
Affiliation(s)
- Laura M. Echeverry-Cardona
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia, Sede Manizales, Manizales 170001, Colombia; (L.M.E.-C.); (N.Á.)
| | - Natalia Álzate
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia, Sede Manizales, Manizales 170001, Colombia; (L.M.E.-C.); (N.Á.)
| | - Elisabeth Restrepo-Parra
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia, Sede Manizales, Manizales 170001, Colombia; (L.M.E.-C.); (N.Á.)
| | - Rogelio Ospina
- Laboratory of Biological Materials Science and Semiconductors, Universidad Industrial de Santander, Bucaramanga 681012, Colombia; (R.O.); (J.H.Q.-O.)
| | - Jorge H. Quintero-Orozco
- Laboratory of Biological Materials Science and Semiconductors, Universidad Industrial de Santander, Bucaramanga 681012, Colombia; (R.O.); (J.H.Q.-O.)
| |
Collapse
|
6
|
Rodríguez C, Briano S, Leiva E. Increased Adsorption of Heavy Metal Ions in Multi-Walled Carbon Nanotubes with Improved Dispersion Stability. Molecules 2020; 25:molecules25143106. [PMID: 32650371 PMCID: PMC7397306 DOI: 10.3390/molecules25143106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, carbon nanotubes (CNTs) have been intensively studied as an effective adsorbent for the removal of pollutants from wastewater. One of the main problems for its use corresponds to the agglomeration of the CNTs due to the interactions between them, which prevents using their entire surface area. In this study, we test the effect of dispersion of oxidized multi-walled carbon nanotubes (MWCNTs) on the removal of heavy metals from acidic solutions. For this, polyurethane filters were dyed with a well-dispersed oxidized MWCNTs solution using chemical and mechanical dispersion methods. Filters were used in column experiments, and the sorption capacity increased more than six times (600%) compared to experiments with suspended MWCNTs. Further, kinetic experiments showed a faster saturation on MWCNTs in column experiments. These results contribute to a better understanding of the effect of dispersion on the use of CNTs as heavy metal ions adsorbent.
Collapse
Affiliation(s)
- Carolina Rodríguez
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (C.R.); (S.B.)
| | - Sebastián Briano
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (C.R.); (S.B.)
| | - Eduardo Leiva
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (C.R.); (S.B.)
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Correspondence: ; Tel.: +56-2-2354-7224; Fax: +56-2-2354-5876
| |
Collapse
|
7
|
Lado-Touriño I, Ros Viñegla P. Molecular dynamics simulations of surfactant adsorption on carbon nanotubes intended for biomedical applications. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00184-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Characterizing dispersion and long term stability of concentrated carbon nanotube aqueous suspensions for fabricating ductile cementitious composites. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2016.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|