1
|
Lu J, Ge Y, Zhu X, Ma Y, Chiou BS, Liu F. Enhancing the stability of spray-dried vitamin A acetate: the role of synergistic wall materials in microencapsulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40165452 DOI: 10.1002/jsfa.14257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Vitamin A is a fat-soluble vitamin that is susceptible to environmental factors, which can result in reduced activity. The stability of vitamins directly affects the shelf life and market competitiveness of products in the nutrient-fortified foods/drugs sector. Encapsulation via emulsion spray drying is a commonly utilized method to enhance the stability of active substances. It boasts a wide range of applications and capability for automated and continuous production. The wall material of microcapsules represents one of the pivotal factors influencing their properties, potentially mitigating the degradation of active substances during storage. RESULTS This study aimed to investigate the characteristics of vitamin A acetate (VAA) high-loading-capacity emulsions and microcapsules formulated with different encapsulating agents (gum arabic (GA), gelatin (GEL), white sugar (WS) and octenyl succinic acid-modified starch) prepared by spray drying. According to the accelerated storage experiment formula, the shelf life of microcapsules stored at 60 °C for 35 days is about 1 year, and the retention rate of GA + GEL/WS microcapsules with a loading capacity of 100 g kg-1 reaches over 90%. The performance of microcapsules with different wall materials was investigated and the reasons for the enhanced stability through the interaction between wall materials were analyzed. CONCLUSION The results showed that spray drying of microcapsules improved the water solubility and storage stability of VAA. At high loading levels, the synergistic effect between wall materials can improve the density of microcapsules, thereby enhancing the storage stability of VAA microcapsules. Such higher storage stability is beneficial for extending the shelf life of fortified foods and pharmaceuticals, thereby expanding the application of VAA in the food sector. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaxin Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| | - Yi Ge
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| | - Xiaoyong Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
- Zhejiang NHU Company Ltd, Xinchang, China
| | - Yun Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, US Department of Agriculture, Albany, CA, USA
| | - Fei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| |
Collapse
|
2
|
Liu S, Gaisford S, Williams GR. Ciprofloxacin-Loaded Spray-Dried Lactose Particles: Formulation Optimization and Antibacterial Efficacy. Pharmaceutics 2025; 17:392. [PMID: 40143055 PMCID: PMC11945521 DOI: 10.3390/pharmaceutics17030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Bacterial infections in the oral cavity and outer ear require effective and targeted drug delivery systems. This study details the production of drug-loaded lactose microparticles, with the aim of creating antibiotic formulations for ultimate use in combatting oral and outer ear bacterial infections. Methods: Lactose particles were prepared via spray drying and optimized with varying ciprofloxacin (cipro) loadings to maximize the drug content. The particles were characterized to evaluate their performance in terms of physicochemical properties, drug-loading efficiency, drug-release kinetics, and antibacterial activity. Results: The resulting particles exhibited spherical morphology, efficient cipro loading (in the range of 1.1-52.9% w/w) and rapid cipro release within 5 h (achieving 70-81% release). In addition, they demonstrated effective concentration-dependent antibacterial activity against gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa, with bacterial growth effectively inhibited for more than 24 h when particle concentrations reached the minimum inhibitory concentration. Conclusions: These findings highlight the potential of spray-dried cipro loaded lactose particles as an efficient approach for localized antibacterial treatment, offering a promising solution for managing bacterial infections in the oral cavity and outer ear.
Collapse
Affiliation(s)
| | | | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (S.L.); (S.G.)
| |
Collapse
|
3
|
Li M, Nie Z, Yan S, Zhang S, Chen XD, Wu WD. Uniform Spray Dried Loxapine Microparticles Potentially for Nasal Delivery: Exploring Discriminatory In Vitro Release Evaluation Methods. AAPS J 2025; 27:60. [PMID: 40074981 DOI: 10.1208/s12248-025-01045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to develop suitable in vitro evaluation methods for the release behavior of nasal powders (NPs). We synthesized a range of standardized microparticles with adjustable size and morphology by co-spray-drying loxapine succinate (LOX) and gelatin (GEL) using an ethanol/water solvent mixture in a self-designed micro-fluidic jet spray dryer (MFJSD). The influence of the LOX/GEL mass ratio and solvent composition on particle characteristics, including size, morphology, and crystalline properties, was systematically investigated. In vitro release profiles of NPs were thoroughly assessed across different release medium, apparatus, and membranes. The modified Transwell® system, utilizing simulated nasal electrolyte solution (SNES) as the release medium, was identified as the most effective in distinguishing the performance of microparticles with diverse attributes. Furthermore, the impact of particle size, morphology, and crystalline properties on in vitro release profiles was discussed. This research presents a robust methodology for the in vitro evaluation of NPs release profiles and provides a practical approach for the rational fabrication of high-quality NPs products.
Collapse
Affiliation(s)
- Mengyuan Li
- Engineering Research Centre of Advanced Powder Technology, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China
| | - Ziwei Nie
- Engineering Research Centre of Advanced Powder Technology, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China
| | - Shen Yan
- Engineering Research Centre of Advanced Powder Technology, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China
| | - Shengyu Zhang
- Engineering Research Centre of Advanced Powder Technology, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China.
| | - Xiao Dong Chen
- Engineering Research Centre of Advanced Powder Technology, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China
| | - Winston Duo Wu
- Engineering Research Centre of Advanced Powder Technology, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China.
| |
Collapse
|
4
|
Virijević K, Živanović M, Pavić J, Dragačević L, Ljujić B, Miletić Kovačević M, Papić M, Živanović S, Milenković S, Radojević I, Filipović N. Electrospun Gelatin Scaffolds with Incorporated Antibiotics for Skin Wound Healing. Pharmaceuticals (Basel) 2024; 17:851. [PMID: 39065702 PMCID: PMC11280474 DOI: 10.3390/ph17070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Recent advances in regenerative medicine provide encouraging strategies to produce artificial skin substitutes. Gelatin scaffolds are successfully used as wound-dressing materials due to their superior properties, such as biocompatibility and the ability to mimic the extracellular matrix of the surrounding environment. In this study, five gelatin combination solutions were prepared and successfully electrospun using an electrospinning technique. After careful screening, the optimal concentration of the most promising combination was selected for further investigation. The obtained scaffolds were crosslinked with 25% glutaraldehyde vapor and characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The incorporation of antibiotic agents such as ciprofloxacin hydrochloride and gentamicin sulfate into gelatin membranes improved the already existing antibacterial properties of antibiotic-free gelatin scaffolds against Pseudomonas aeruginosa and Staphylococcus aureus. Also, the outcomes from the in vivo model study revealed that skin regeneration was significantly accelerated with gelatin/ciprofloxacin scaffold treatment. Moreover, the gelatin nanofibers were found to strongly promote the neoangiogenic process in the in vivo chick embryo chorioallantoic membrane assay. Finally, the combination of gelatin's extracellular matrix and antibacterial agents in the scaffold suggests its potential for effective wound-healing treatments, emphasizing the importance of gelatin scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Katarina Virijević
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Ž.); (J.P.)
| | - Marko Živanović
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Ž.); (J.P.)
| | - Jelena Pavić
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Ž.); (J.P.)
| | - Luka Dragačević
- Institute of Virology, Vaccines and Sera “Torlak”, 11000 Belgrade, Serbia;
| | - Biljana Ljujić
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Marina Miletić Kovačević
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Miloš Papić
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.P.); (S.Ž.)
| | - Suzana Živanović
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.P.); (S.Ž.)
| | - Strahinja Milenković
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia; (S.M.); (N.F.)
| | - Ivana Radojević
- Department of Biology and Ecology, Faculty of Natural Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Nenad Filipović
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia; (S.M.); (N.F.)
- BioIRC—Bioengineering Research and Development Center, 34000 Kragujevac, Serbia
| |
Collapse
|
5
|
Díaz-Montes E. Wall Materials for Encapsulating Bioactive Compounds via Spray-Drying: A Review. Polymers (Basel) 2023; 15:2659. [PMID: 37376305 DOI: 10.3390/polym15122659] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Spray-drying is a continuous encapsulation method that effectively preserves, stabilizes, and retards the degradation of bioactive compounds by encapsulating them within a wall material. The resulting capsules exhibit diverse characteristics influenced by factors such as operating conditions (e.g., air temperature and feed rate) and the interactions between the bioactive compounds and the wall material. This review aims to compile recent research (within the past 5 years) on spray-drying for bioactive compound encapsulation, emphasizing the significance of wall materials in spray-drying and their impact on encapsulation yield, efficiency, and capsule morphology.
Collapse
Affiliation(s)
- Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticoman, Ciudad de Mexico 07340, Mexico
| |
Collapse
|
6
|
Amukarimi S, Mobasherpour I, Abdollahi S, Brouki Milan P, Mozafari M. Synthesis and characterization of ciprofloxacin-loaded biodegradable magnesium implants for the prevention of implant-associated infections. MATERIALS CHEMISTRY AND PHYSICS 2023; 299:127530. [DOI: 10.1016/j.matchemphys.2023.127530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
7
|
Alhajj N, O'Reilly NJ, Cathcart H. Developing ciprofloxacin dry powder for inhalation: A story of challenges and rational design in the treatment of cystic fibrosis lung infection. Int J Pharm 2021; 613:121388. [PMID: 34923051 DOI: 10.1016/j.ijpharm.2021.121388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is an inherited multisystem disease affecting the lung which leads to a progressive decline in lung function as a result of malfunctioning mucociliary clearance and subsequent chronic bacterial infections. Pseudomonas aeruginosa is the predominant cause of lung infection in CF patients and is associated with significant morbidity and mortality. Thus, antibiotic therapy remains the cornerstone of the treatment of CF. Pulmonary delivery of antibiotics for lung infections significantly reduces the required dose and the associated systemic side effects while improving therapeutic outcomes. Ciprofloxacin is one of the most widely used antibiotics against P. aeruginosa and the most effective fluoroquinolone. However, in spite of the substantial amount of research aimed at developing ciprofloxacin powder for inhalation, none of these formulations has been commercialized. Here, we present an integrated view of the diverse challenges associated with delivering ciprofloxacin dry particles to the lungs of CF patients and the rationales behind recent formulations of ciprofloxacin dry powder for inhalation. This review will discuss the challenges in developing ciprofloxacin powder for inhalation along with the physiological and pathophysiological challenges such as ciprofloxacin lung permeability, overproduction of viscous mucus and bacterial biofilms. The review will also discuss the current and emerging particle engineering approaches to overcoming these challenges. By doing so, we believe the review will help the reader to understand the current limitations in developing an inhalable ciprofloxacin powder and explore new opportunities of rational design strategies.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
8
|
Cosmetic, Biomedical and Pharmaceutical Applications of Fish Gelatin/Hydrolysates. Mar Drugs 2021; 19:md19030145. [PMID: 33800149 PMCID: PMC8000627 DOI: 10.3390/md19030145] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
There are several reviews that separately cover different aspects of fish gelatin including its preparation, characteristics, modifications, and applications. Its packaging application in food industry is extensively covered but other applications are not covered or covered alongside with those of collagen. This review is comprehensive, specific to fish gelatin/hydrolysate and cites recent research. It covers cosmetic applications, intrinsic activities, and biomedical applications in wound dressing and wound healing, gene therapy, tissue engineering, implants, and bone substitutes. It also covers its pharmaceutical applications including manufacturing of capsules, coating of microparticles/oils, coating of tablets, stabilization of emulsions and drug delivery (microspheres, nanospheres, scaffolds, microneedles, and hydrogels). The main outcomes are that fish gelatin is immunologically safe, protects from the possibility of transmission of bovine spongiform encephalopathy and foot and mouth diseases, has an economic and environmental benefits, and may be suitable for those that practice religious-based food restrictions, i.e., people of Muslim, Jewish and Hindu faiths. It has unique rheological properties, making it more suitable for certain applications than mammalian gelatins. It can be easily modified to enhance its mechanical properties. However, extensive research is still needed to characterize gelatin hydrolysates, elucidate the Structure Activity Relationship (SAR), and formulate them into dosage forms. Additionally, expansion into cosmetic applications and drug delivery is needed.
Collapse
|
9
|
Samborska K, Boostani S, Geranpour M, Hosseini H, Dima C, Khoshnoudi-Nia S, Rostamabadi H, Falsafi SR, Shaddel R, Akbari-Alavijeh S, Jafari SM. Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Makled S, Boraie N, Nafee N. Nanoparticle-mediated macrophage targeting-a new inhalation therapy tackling tuberculosis. Drug Deliv Transl Res 2020; 11:1037-1055. [PMID: 32617866 DOI: 10.1007/s13346-020-00815-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite the potent clinical efficacy of linezolid (LNZ) against drug-resistant tuberculosis, its safety and tolerability remain of major concern. Our objective is to develop antitubercular inhalable LNZ nano-embedded microparticles. In this context, LNZ incorporated in non-structured lipid carriers (NLCs) was characterized in terms of colloidal, morphological, thermal, and release profiles. The potential of LNZ-NLCs to cross mucosal barriers and invade alveolar macrophages (AM, MH-S cells) was appraised. In vivo proof of concept was accomplished via orotracheal administration to mice. Respirable microparticles prepared by spray drying NLCs with diluents were assessed for their size, shape, flowability, aerosolization performance, and lung deposition pattern. NLCs (809-827 nm in size, zeta potential - 37.4 to - 58.9 mV) ensued 19% LNZ loading and pH-independent sustained release. Penetration studies revealed 73% LNZ crossing mucus within 1 h. Meanwhile, viability assay on A549 cells ensured an IC50 of 1.2 and 0.32 mg/mL for plain and LNZ-NLCs, respectively. CLSM confirmed phagocytosis of NLCs by MH-S macrophages, while H&E staining demonstrated NLC accumulation in murine AM in vivo with no signs of histopathological/biochemical changes. Bronchoalveolar lavage showed significantly low levels of LDH and total proteins (TP) for LNZ-NLCs highlighting their superior safety. Respirable microparticles embedding LNZ-NLCs ensured excellent aerosolization (MMAD 2 μm, FPF 93%) denoting perfect alveolar deposition. The developed inhalation therapy provided sustained LNZ release, mucus penetrability, potential safety in therapeutic doses, in vitro and in vivo macrophage targetability, and preferential deposition in the deep lung. Overall positive outcomes rely on reduced dose, dosing frequency, and per se superior safety circumventing systemic-associated life-threatening side effects. Graphical abstract.
Collapse
Affiliation(s)
- Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Noha Nafee
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt. .,Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait.
| |
Collapse
|
11
|
Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev 2020; 157:37-62. [PMID: 32707147 PMCID: PMC7374157 DOI: 10.1016/j.addr.2020.07.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
Oral administration is a pillar of the pharmaceutical industry and yet it remains challenging to administer hydrophilic therapeutics by the oral route. Smart and controlled oral drug delivery could bypass the physiological barriers that limit the oral delivery of these therapeutics. Micro- and nanoscale technologies, with an unprecedented ability to create, control, and measure micro- or nanoenvironments, have found tremendous applications in biology and medicine. In particular, significant advances have been made in using these technologies for oral drug delivery. In this review, we briefly describe biological barriers to oral drug delivery and micro and nanoscale fabrication technologies. Micro and nanoscale drug carriers fabricated using these technologies, including bioadhesives, microparticles, micropatches, and nanoparticles, are described. Other applications of micro and nanoscale technologies are discussed, including fabrication of devices and tissue engineering models to precisely control or assess oral drug delivery in vivo and in vitro, respectively. Strategies to advance translation of micro and nanotechnologies into clinical trials for oral drug delivery are mentioned. Finally, challenges and future prospects on further integration of micro and nanoscale technologies with oral drug delivery systems are highlighted.
Collapse
|
12
|
Consoli L, Dias RAO, da Silva Carvalho AG, da Silva VM, Hubinger MD. Resveratrol-loaded microparticles: Assessing Maillard conjugates as encapsulating matrices. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.04.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|