1
|
Thoesen A, McBryan T, Mick D, Green M, Martia J, Marvi H. Granular scaling laws for helically driven dynamics. Phys Rev E 2020; 102:032902. [PMID: 33075970 DOI: 10.1103/physreve.102.032902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 08/20/2020] [Indexed: 01/16/2023]
Abstract
Exploration of granular physics for three-dimensional geometries interacting with deformable media is crucial for further understanding of granular mechanics and vehicle-terrain dynamics. A modular screw propelled vehicle is, therefore, designed for testing the accuracy of a novel helical granular scaling law in predicting vehicle translational velocity and power. A dimensional analysis is performed on the vehicle and screw pontoons. Two additional pontoon pairs of increased size and mass are determined from dimensional scalars. The power and velocity of these larger pairs are predicted by the smaller pair using the scaling relationships. All three sets are subjected to ten trials of five angular velocities ranging from 13.7 to 75.0 revolutions per minute in a high interlock lunar regolith analog derived from mining tailings. Experimental agreement for prediction of power (3-9% error) and translational velocity (2-12% error) are observed. A similar set of geometries is subjected to multibody dynamics and discrete element method cosimulations of Earth and lunar gravity to verify a gravity-dependent subset of the scaling laws. These simulations show agreement (under 5% error for all sets) and support law validity for gravity between Earth and lunar magnitude. These results support further expansion of granular scaling models to enable prediction for vehicle-terrain dynamics for a variety of environments and geometries.
Collapse
Affiliation(s)
- Andrew Thoesen
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, 85287
| | - Teresa McBryan
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, 85287
| | - Darwin Mick
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, 85287
| | - Marko Green
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, 85287
| | - Justin Martia
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, 85287
| | - Hamid Marvi
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, 85287
| |
Collapse
|