1
|
Schrader M, Schrinner K, Polomsky L, Ivanov D, Kampen I, Schilde C, Krull R, Kwade A. Quantification and modeling of macroparticle-induced mechanical stress for varying shake flask cultivation conditions. Front Bioeng Biotechnol 2023; 11:1254136. [PMID: 37731767 PMCID: PMC10507416 DOI: 10.3389/fbioe.2023.1254136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023] Open
Abstract
In biotechnological processes, filamentous microorganisms are known for their broad product spectrum and complex cellular morphology. Product formation and cellular morphology are often closely linked, requiring a well-defined level of mechanical stress to achieve high product concentrations. Macroparticles were added to shake flask cultures of the filamentous actinomycete Lentzea aerocolonigenes to find these optimal cultivation conditions. However, there is currently no model concept for the dependence of the strength and frequency of the bead-induced stress on the process parameters. Therefore, shake flask simulations were performed for combinations of bead size, bead concentration, bead density and shaking frequency. Contact analysis showed that the highest shear stresses were caused by bead-bottom contacts. Based on this, a newly generated characteristic parameter, the stress area ratio (SAR), was defined, which relates the bead wall shear and normal stresses to the total shear area. Comparison of the SAR with previous cultivation results revealed an optimum pattern for product concentration and mean product-to-biomass related yield coefficient. Thus, this model is a suitable tool for future optimization, comparison and scaling up of shear-sensitive microorganism cultivation. Finally, the simulation results were validated using high-speed recordings of the bead motion on the bottom of the shake flask.
Collapse
Affiliation(s)
- Marcel Schrader
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kathrin Schrinner
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Laura Polomsky
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dimitri Ivanov
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Kampen
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Carsten Schilde
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rainer Krull
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Arno Kwade
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Rhymer D, Ingram A, Sadler K, Windows-Yule C. A discrete element method investigation within vertical stirred milling: Changing the grinding media restitution and sliding friction coefficients. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|