1
|
Vasanthi B, Gopakumar NP, Anjana PS, Nair G. Mechanoluminescence and photoluminescence properties of Eu 3+ -activated SrGa 2 O 4 phosphors. LUMINESCENCE 2024; 39:e4602. [PMID: 37746741 DOI: 10.1002/bio.4602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Red-emitting Eu3+ activated SrGa2 O4 phosphors were synthesized using a conventional solid-state reaction method. The structural, optical, and luminescence properties were systematically investigated. The synthesized phosphors are single phase with a monoclinic structure. There are no significant changes in the phase and the crystal structure of the host matrix after incorporating Eu3+ ions. The undoped and Eu3+ doped SrGa2 O4 phosphors exhibited good mechanoluminescence (ML) emission without any irradiation with ultraviolet (UV) or gamma rays. Eu3+ -activated SrGa2 O4 phosphors have prominent red emission attributed to 5 D0 → 7 F2 forced electric dipole transition excited at 395 nm. The colour coordinates and purity of the SrGa2 O4 : 0.08 Eu3+ phosphor were calculated to be (0.6102, 0.3810) and 97.6%, respectively. The quantum efficiency is 12.68%, and was better than that of commercially available red phosphors. The ML and photoluminescence studies revealed that the synthesized phosphors can act as potential candidates for stress sensors, UV or near-UV light-emitting diodes (NUV LEDs) and components of phosphor-converted white light-emitting diode (pc-WLED) applications.
Collapse
Affiliation(s)
- Baby Vasanthi
- Post Graduate Department of Physics, All Saints' College, University of Kerala, Thiruvananthapuram, Kerala, India
- Post Graduate Department of Physics and Research Centre, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram, India
| | - Narayana Panickar Gopakumar
- Post Graduate Department of Physics and Research Centre, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram, India
| | | | - Girija Nair
- Post Graduate Department of Physics, All Saints' College, University of Kerala, Thiruvananthapuram, Kerala, India
- Post Graduate Department of Physics, NSS College, Pandalam, University of Kerala, Pathanamthitta, India
| |
Collapse
|
2
|
Majani SS, Meghana, S H S, J S, Umesh S, Shivamallu C, Iqbal M, Amachawadi RG, K N V, Kollur SP. Barium Lanthanum Oxide Nanosheets in Photocatalytic and Forensic Applications: One-Pot Synthesis and Characterization. Molecules 2023; 28:7228. [PMID: 37894707 PMCID: PMC10609402 DOI: 10.3390/molecules28207228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The present work elucidates the fabrication of Barium Lanthanum Oxide nanosheets (BaLa2O4 NSs) via a simple one-pot precipitation method. The acquired results show an orthorhombic crystal system with an average crystallite size of 27 nm. The morphological studies revealed irregular-shaped sheets stacked together in a layered structure, with the confirmation of the precursor elements. The diffused reflectance studies revealed a strong absorption between 200 nm and 350 nm, from which the band-gap energy was evaluated to be 4.03 eV. Furthermore, the fluorescence spectrum was recorded for the prepared samples; the excitation spectrum shows a strong peak at 397 nm, attributed to the 4F7/2→4G11/2 transition, while the emission shows two prominent peaks at 420 nm (4G7/2→4F7/2) and 440 nm (4G5/2→4F7/2). The acquired emission results were utilized to confirm the color emission using a chromaticity plot, which found the coordinates to be at (0.1529 0.1040), and the calculated temperature was 3171 K. The as-prepared nanosheets were utilized in detecting latent fingerprints (LFPs) on various non-porous surfaces. The powder-dusting method was used to develop latent fingerprints on various non-porous surfaces, which resulted in detecting all the three ridge patterns. Furthermore, the as-synthesized nanosheets were used to degrade methyl red (MR) dye, the results of which show more than 60% degradation at the 70th minute. It was also found that there was no further degradation after 70 min. All the acquired results suggest the clear potential of the prepared BaLa2O4 NSs for use in advanced forensic and photocatalytic applications.
Collapse
Affiliation(s)
- Sanjay S. Majani
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru 570 022, Karnataka, India; (S.S.M.)
| | - Meghana
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru 570 022, Karnataka, India; (S.S.M.)
| | - Sowmyashree S H
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru 570 022, Karnataka, India; (S.S.M.)
| | - Sowjanyashree J
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru 570 022, Karnataka, India; (S.S.M.)
| | - Sahaja Umesh
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru 570 022, Karnataka, India; (S.S.M.)
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570 015, Karnataka, India;
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5606, USA;
| | - Venkatachalaiah K N
- Department of Physics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru Campus, Bengaluru 560 035, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru 570 022, Karnataka, India; (S.S.M.)
| |
Collapse
|
3
|
Zhang K, Zhu MJ, Zhou YW, Liu X, Chen F, Zhou YY, Li WF, Liu S, Jiang Y, Liu SQ. Coordination effect enhanced visualization of latent fingerprint with Eu (TTA) 3phen-SiO 2 microspheres. Anal Chim Acta 2023; 1279:341774. [PMID: 37827672 DOI: 10.1016/j.aca.2023.341774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Latent fingerprint (LFP) powders are crucial in the detection of LFPs in forensic science. However, it is often plagued by poor image resolution and low contrast. Herein, enhanced LFP fluorescence (FL) visualizations are achieved by doping Eu(III) coordination compound Eu(TTA)3phen directly into SiO2 microspheres instead of Eu(III) ions. Using the synthesized Eu(TTA)3phen-SiO2 microspheres, the fine characteristic structure of LFP can be seen and recognized under 365 nm irradiation, up to Level 3. However, the Eu3+-SiO2 microspheres were difficult to recognize the Level 2,3 fingerprint structure. The difference between the ridge and furrow gray values of Eu(TTA)3phen-SiO2 microspheres is 2.1 times that of Eu3+-SiO2 microspheres. The coordination effect increased the asymmetry around Eu(III) ions, resulting in the ultrasensitive 5D0→7F2 transition, thus increasing the FL intensity, and the uniform doping of the Eu(III) coordination compound into SiO2 also reduced the surface FL quenching due to shielding from oxygen. Under this dual effect, the LFP performance of Eu(TTA)3phen-SiO2 microspheres has been significantly improved. We believe that this novel and easy LFP visualization method is a promising routine in specific target detection including criminal investigation, customhouse check-in, and drug control.
Collapse
Affiliation(s)
- Kang Zhang
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Meng-Jiao Zhu
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yi-Wen Zhou
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiao Liu
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Feng Chen
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yu-Yang Zhou
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wan-Fei Li
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Sheng Liu
- Gusu Branch of Suzhou Public Security Bureau, Suzhou, 215000, China
| | - Yun Jiang
- Institute of Forensic Sciences, Soochow University, Suzhou, 215021, China
| | - Shou-Qing Liu
- School of Chemistry and Life Science, School of Materials Science and Technology, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
4
|
Zhang Y, Ci Y, Song J, Tong D, Song J, Zhang E, Wan H, Ma Z. Novel Red‐Emitting Gd
3
BW
1‐x
MoxO
9
: Eu
3+
Phosphor with High Thermal Stability for Application in UV‐Excited WLEDs and Rapid Visualization of Latent Fingerprints. ChemistrySelect 2023. [DOI: 10.1002/slct.202204438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Stimuli-responsive color-tunable BaLa2ZnO5:Bi3+ phosphor for the encryption and authentication of security patterns and latent fingerprint detection. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
6
|
Mamatha G, Radha Krushna B, Malleshappa J, Subramanian B, Daruka Prasad B, Srikanth C, Nagabhushana H. Designing orange-red emitting luminescent platform for data security and information encryption based Sm3+ doped BLAO phosphor. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Ansari AA, Aldajani KM, AlHazaa AN, Albrithen HA. Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Lavanya DR, Darshan GP, Malleshappa J, Premkumar HB, Sharma SC, Hariprasad SA, Nagabhushana H. One material, many possibilities via enrichment of luminescence in La 2Zr 2O 7:Tb 3+ nanophosphors for forensic stimuli aided applications. Sci Rep 2022; 12:8898. [PMID: 35614081 PMCID: PMC9132173 DOI: 10.1038/s41598-022-11980-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 12/28/2022] Open
Abstract
Engineering a single material with multidirectional applications is crucial for improving productivity, low cost, flexibility, least power consumption, etc. To achieve these requirements, novel design structures and high-performance materials are in urgent need. Lanthanide-doped nanophosphors have the greatest strengths and ability in order to tune their applications in various dimensions. However, applications of nanophosphor in latent fingerprints visualization, anti-counterfeiting, and luminescent gels/films are still in their infancy. This study demonstrated a simple strategy to enhance the luminescence of Tb3+ (1-11 mol %) doped La2Zr2O7 nanophosphors by conjugating various fluxes via a simple solution combustion route. The photoluminescence emission spectra reveal intense peaks at ~ 491, 546, 587, and 622 nm, which arises from 5D4 → 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions, respectively. The highest emission intensity was achieved in the NH4Cl flux assisted nanophosphor as compared to NaBr and NH4F assisted samples. The colorimetric images of fingerprints visualized using the optimized nanophosphor on forensic related surfaces exhibit level -III ridge details, including sweat pores, the width of the ridges, bifurcation angle, and the successive distance between sweat pores, etc. These results are decisive parameters that clearly support the statement "no two persons have ever been found to have the same fingerprints". The anti-counterfeiting security ink was formulated using optimized nanophosphor and various patterns were designed by simple screen printing and dip pen technologies. The encoded information was decrypted only under ultraviolet 254 nm light. All the designed patterns are exhibit not just what it looks/feel like and how better it works. As a synergetic contribution of enhanced luminescence of the prepared nanophosphor, the green-emissive films were fabricated, which display excellent flexibility, uniformity, and transparency in the normal and ultraviolet 254 nm light illumination. The aforementioned results revealed that the prepared NH4Cl flux-assisted La2Zr2O7: Tb3+(7 mol %) NPs are considered to be the best candidate for multi-dimensional applications.
Collapse
Affiliation(s)
- D R Lavanya
- Department of Physics, University College of Science, Tumkur University, Tumkur, 572103, India
| | - G P Darshan
- Department of Physics, Faculty of Mathematical and Physical Sciences, M. S. Ramaiah University of Applied Sciences, Bengaluru, 560054, India.
| | - J Malleshappa
- Department of Physics, University College of Science, Tumkur University, Tumkur, 572103, India
| | - H B Premkumar
- Department of Physics, Faculty of Mathematical and Physical Sciences, M. S. Ramaiah University of Applied Sciences, Bengaluru, 560054, India
| | - S C Sharma
- Honarory Professor, Jain Deemed to be University, Bengaluru, 560069, India
| | | | - H Nagabhushana
- Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur, 572103, India.
| |
Collapse
|
9
|
Functionalized surfaces created by perturbation in luminescent polymer nanocomposites: Materials for forensic and security ink applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|