1
|
Stepanova A, Tite T, Ivanenko I, Enculescu M, Radu C, Culita DC, Rostas AM, Galca AC. TiO 2 Phase Ratio's Contribution to the Photocatalytic Activity. ACS OMEGA 2023; 8:41664-41673. [PMID: 37970036 PMCID: PMC10634250 DOI: 10.1021/acsomega.3c05890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Photocatalysis is one of the approaches for solving environmental issues derived from extremely harmful pollution caused by industrial dyes, medicine, and heavy metals. Titanium dioxide is among the most promising photocatalytic semiconductors; thus, in this work, TiO2 powders were prepared by a hydrothermal synthesis using titanium tetrachloride TiCl4 as a Ti source. The effect of the hydrochloric acid (HCl) concentration on TiO2 formation was analyzed, in which a thorough morpho-structural analysis was performed employing different analysis methods like XRD, Raman spectroscopy, SEM/TEM, and N2 physisorption. EPR spectroscopy was employed to characterize the paramagnetic defect centers and the photogeneration of reactive oxygen species. Photocatalytic properties were tested by photocatalytic degradation of the rhodamine B (RhB) dye under UV light irradiation and using a solar simulator. The pH value directly influenced the formation of the TiO2 phases; for less acidic conditions, the anatase phase of TiO2 crystallized, with a crystallite size of ≈9 nm. Promising results were observed for TiO2, which contained 76% rutile, showing a 96% degradation of RhB under the solar simulator and 91% under UV light after 90 min irradiation, and the best result showed that the sample with 67% of the anatase phase after 60 min irradiation under the solar simulator had a 99% degradation efficiency.
Collapse
Affiliation(s)
- Anna Stepanova
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Teddy Tite
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Iryna Ivanenko
- National
Technical University of Ukraine Igor Sikorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine
| | - Monica Enculescu
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Cristian Radu
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Daniela Cristina Culita
- Institute
of Physical Chemistry Ilie Murgulescu, Romanian Academy, Bucharest 060021, Romania
| | - Arpad Mihai Rostas
- National
Institute of Isotopic and Molecular Technologies, Cluj-Napoca 400293, Romania
| | | |
Collapse
|
2
|
de la Hoya FC, Castanedo-Pérez R, Márquez-Marín J, Hernández-García F, Torres-Delgado G. Study of the water content on the CdO + CdTiO3 crystalline grains distribution in thin films obtained by sol-gel and their effect on the morphological, optical, and photocatalytic properties. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
3
|
Valadez-Renteria E, Oliva J, Navarro-Garcia NE, Rodriguez-Gonzalez V. Novel sustainable composites made of car's waste and sodium titanate for the efficient photocatalytic removal of the bromophenol blue dye: study under solar and UV-Vis light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76752-76765. [PMID: 35670940 DOI: 10.1007/s11356-022-21301-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In this research, W-doped sodium nanotube titanate (NaTNT) nanoparticles were used for the photocatalytic degradation of the bromophenol blue (BPB) dye. The NaTNT powder was mixed with car's tire powder (TP) to enhance its light absorption or was supported on recycled car's air filters (AFs) to facilitate its removal from the cleaned water after the degradation of the BPB. The SEM analysis indicated that the NaTNT nanoparticles and the TP had sizes in the range of 150-325 nm and 8-37 µm, respectively. Both powders were also studied by X-ray diffraction and found that the sodium titanate corresponds to the Na2Ti6O13 with monoclinic phase, while the TP is formed by rubber, silicon, ZnS, and ZnO. The photocatalytic activity of the NaTNT powder was evaluated for the degradation of BPB dye (20 ppm) and obtained a maximum degradation of 95 and 80% under UV-Vis and natural solar light, respectively, after 4 h of irradiation. For the NaTNT + TP composite mixture, the maximum degradation was 87 and 68% under UV-Vis and solar light, respectively. The NaTNT and NaTNT + TP powders were supported on the AFs to form the AF + NaTNT and AF + NaTNT + TP composites. Those ones produced maximum degradation of 86% and 74% (under UV-Vis light), respectively. Besides, several initial pHs were tested for the contaminated water and determined that the maximum degradation of BPB (93-95%) is reached for the pHs of 3 and 7. Reuse experiments (3 cycles) revealed that the diminution of the BPB degradation percentage was 23% and 20% for the NaTNT and NaTNT + TP powders, respectively. Overall, it was demonstrated that the wasted car's air filters can be used as a support for photocatalytic powders, and this combination of AF + powder degrades the BPB with high efficiency.
Collapse
Affiliation(s)
- Ernesto Valadez-Renteria
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica Y Tecnológica A.C, 78216, San Luis Potosí, SLP, México
| | - Jorge Oliva
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica Y Tecnológica A.C, 78216, San Luis Potosí, SLP, México
| | - Nayeli E Navarro-Garcia
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica Y Tecnológica A.C, 78216, San Luis Potosí, SLP, México
| | - Vicente Rodriguez-Gonzalez
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica Y Tecnológica A.C, 78216, San Luis Potosí, SLP, México.
| |
Collapse
|
4
|
Sub-micro photocatalytic TiO2 particles for a water depollution: Comparable removal efficiency to commercial P25 and easy separation via a simple sedimentation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Preda S, Pandele-Cușu J, Petrescu SV, Ciobanu EM, Petcu G, Culiță DC, Apostol NG, Costescu RM, Raut I, Constantin M, Predoană L. Photocatalytic and Antibacterial Properties of Doped TiO2 Nanopowders Synthesized by Sol−Gel Method. Gels 2022; 8:gels8100673. [PMID: 36286174 PMCID: PMC9601293 DOI: 10.3390/gels8100673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
For environmental applications, nanosized TiO2-based materials are known as the most important photocatalyst and are intensively studied for their advantages such as their higher activity, lower price, and chemical and photoresist properties. Zn or Cu doped TiO2 nanoparticles with anatase crystalline structure were synthesized by sol−gel process. Titanium (IV) butoxide was used as a TiO2 precursor, with parental alcohol as a solvent, and a hydrolysing agent (ammonia-containing water) was added to obtain a solution with pH 10. The gels were characterized by TG/DTA analysis, SEM, and XPS. Based on TG/DTA results, the temperature of 500 °C was chosen for processing the powders in air. The structure of the samples thermally treated at 500 °C was analysed by XRD and the patterns show crystallization in a single phase of TiO2 (anatase). The surface of the samples and the oxidation states was investigated by XPS, confirming the presence of Ti, O, Zn and Cu. The antibacterial activity of the nanoparticle powder samples was verified using the gram−positive bacterium Staphylococcus aureus. The photocatalytic efficiency of the doped TiO2 nanopowders for degradation of methyl orange (MO) is here examined in order to evaluate the potential applications of these materials for environmental remediation.
Collapse
Affiliation(s)
- Silviu Preda
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Jeanina Pandele-Cușu
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Simona Viorica Petrescu
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Elena Mădălina Ciobanu
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Gabriela Petcu
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Daniela C. Culiță
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Nicoleta G. Apostol
- National Institute of Materials Physics, Atomiștilor 405A, 077125 Măgurele, Romania
| | - Ruxandra M. Costescu
- National Institute of Materials Physics, Atomiștilor 405A, 077125 Măgurele, Romania
| | - Iuliana Raut
- National Institute for Research & Development in Chemistry & Petrochemistry−ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
| | - Mariana Constantin
- National Institute for Research & Development in Chemistry & Petrochemistry−ICECHIM, 202 Splaiul Independenței, 060021 Bucharest, Romania
- Faculty of Pharmacy, “Titu Maiorescu” University, 16 Gh. Sincai, 040441 Bucharest, Romania
| | - Luminița Predoană
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independenței, 060021 Bucharest, Romania
- Correspondence: ; Tel.: +4-021-318-85-95
| |
Collapse
|
6
|
Liu L, Chen X, Feng S, Wan Y, Luo J. Enhancing the Antifouling Ability of a Polyamide Nanofiltration Membrane by Narrowing the Pore Size Distribution via One-Step Multiple Interfacial Polymerization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36132-36142. [PMID: 35881887 DOI: 10.1021/acsami.2c09408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Application of nanofiltration membranes in industries still has to contend with membrane fouling that causes a significant loss of separation performance. Herein, an innovative approach to design antifouling membranes with a narrowed pore size distribution by interfacial polymerization (IP) assisted by silane coupling agents is reported. An aqueous solution of piperazine anhydrous (PIP) and γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560) is employed to perform IP with an organic solution of trimesoyl chloride and tetraethyl orthosilicate (TEOS) on a porous support. In accordance with the results of molecular dynamics and dissipative particle dynamics simulations, the reactive additive KH560 accelerates the diffusion rate of PIP to enrich at the reaction boundary. Moreover, the hydrolysis/condensation of KH560 and TEOS at the aqueous/organic interface forms an interpenetrating network with the polyamide network, which regulates the separation layer structure. The characterization results indicate that the polyamide-silica membrane has a denser, thicker, and uniform separation layer. The mean pore size of the polyamide-silica membrane and the traditional polyamide membrane is 0.62 and 0.74 nm, respectively, and these correspond to the geometric standard deviation (namely, pore size distribution) of 1.39 and 1.97, respectively. It is proved that the narrower pore size distribution endows the polyamide-silica membrane with stronger antifouling performance (flux decay ratio decreases from 18.4 to 3.8%). Such a membrane also has impressive long-term antifouling stability during cane molasses decolorization at a high temperature (50 °C). The outcomes of this study not only provide a novel one-step multiple IP strategy to prepare antifouling nanofiltration membranes but also emphasize the importance of pore size distribution in fouling control for various industrial liquid separations.
Collapse
Affiliation(s)
- Lulu Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
7
|
Torres-Limiñana J, Feregrino-Pérez AA, Vega-González M, Escobar-Alarcón L, Cervantes-Chávez JA, Esquivel K. Green Synthesis via Eucalyptus globulus L. Extract of Ag-TiO2 Catalyst: Antimicrobial Activity Evaluation toward Water Disinfection Process. NANOMATERIALS 2022; 12:nano12111944. [PMID: 35683797 PMCID: PMC9183104 DOI: 10.3390/nano12111944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
The problem of water pollution by persistent substances and microorganisms requires solutions that materials such as silver-modified titanium dioxide can provide due to their excellent photocatalytic and antimicrobial properties. However, the synthesis methods conventionally used to obtain these materials involve toxic chemical reagents such as sodium borohydride (NaBH4). The search for alternative synthesis methods that use environmentally friendly substances, such as the biosynthesis method, was evaluated. Silver-titanium dioxide (Ag-TiO2) was synthesized by a Eucalyptus globulus L. extract as a reductive agent through sol-gel and microwave-assisted sol-gel processes. Four different solvents were tested to extract secondary metabolites to determine their roles in reducing silver nanoparticles. Titanium dioxide nanoparticles with sizes from 11 to 14 nm were obtained in the anatase phase, and no narrowing of the bandgap was observed (3.1–3.2 eV) for the Ag-TiO2 materials compared with the pure TiO2. Interestingly, the bacterial inhibition values were close to 100%, suggesting an effective antimicrobial mechanism related to the properties of silver. Finally, by the physicochemical characterization of the materials and their antimicrobial properties, it was possible to obtain a suitable biosynthesized Ag-TiO2 material as a green option for water disinfection that may be compared to the conventional methods.
Collapse
Affiliation(s)
- Jacqueline Torres-Limiñana
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Queretaro 76010, Mexico; (J.T.-L.); (A.A.F.-P.)
| | - Ana A. Feregrino-Pérez
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Queretaro 76010, Mexico; (J.T.-L.); (A.A.F.-P.)
| | - Marina Vega-González
- Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001, Santiago de Queretaro 76230, Mexico;
| | - Luis Escobar-Alarcón
- Departamento de Física, ININ, Carr. México-Toluca, La Marquesa, Ocoyoacac 52750, Mexico;
| | - José Antonio Cervantes-Chávez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Anillo Vial Fray Junípero Serra, Km 8, Santiago de Queretaro 76000, Mexico;
| | - Karen Esquivel
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Queretaro 76010, Mexico; (J.T.-L.); (A.A.F.-P.)
- Correspondence: ; Tel.: +52-442-192-1200 (ext. 65401)
| |
Collapse
|
8
|
Designing durable self-cleaning nanofiltration membranes via sol-gel assisted interfacial polymerization for textile wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|