1
|
Shi C, Zhao H, Fang Y, Shen L, Zhao L. Lactose in tablets: Functionality, critical material attributes, applications, modifications and co-processed excipients. Drug Discov Today 2023; 28:103696. [PMID: 37419210 DOI: 10.1016/j.drudis.2023.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/06/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Lactose is one of the most widespread excipients used in the pharmaceutical industry. Because of its water solubility and acceptable flowability, lactose is generally added into tablet formulation to improve wettability and undesirable flowability. Based on Quality by Design, a better understanding of the critical material attributes (CMAs) of raw materials is beneficial in guiding the improvement of tablet quality and the development of lactose. Additionally, the modifications and co-processing of lactose can introduce more-desirable characteristics to the resulting particles. This review focuses on the functionality, CMAs, applications, modifications and co-processing of lactose in tablets.
Collapse
Affiliation(s)
- Chuting Shi
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Haiyue Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Ying Fang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| |
Collapse
|
2
|
Guan Y, Yang Z, Wu K, Ji H. Crystallization Thermodynamics of α-Lactose Monohydrate in Different Solvents. Pharmaceutics 2022; 14:1774. [PMID: 36145520 PMCID: PMC9506588 DOI: 10.3390/pharmaceutics14091774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
It is common to find that some of the lactose in dairy powders and pharmaceutical tablets is present in the unstable amorphous state. Therefore, their crystallization thermodynamics in different solvents are particularly important. In this paper, the solubility of α-lactose monohydrate (α-LM) in 15 mono-solvents such as ethanol, isopropanol, methanol, 1-propanol, 1-butanol, 2-butanol, isobutanol, 1-pentanol, isoamylol, 1-hexanol, 1-heptanol, 1-octanol, propanoic acid, acetonitrile, and cyclohexanone was evaluated by using the gravimetric method in the temperature ranges from 274.05 K to 323.05 K at constant pressure (1 atm). In the given temperature range, the solubility of α-LM in these solvents increased with the rising of temperature, the highest solubility of α-LM was found in methanol (2.37 × 104), and the lowest was found in 1-hexanol (0.80 × 105). In addition, the increase of α-LM solubility in isopropanol was the largest. The sequence at 298.15 K was: methanol > 1-butanol > isopropanol > ethanol > 1-propanol > 1-heptanol > isobutanol > propionic acid > 1-pentanol > 1-octanol > acetonitrile > isoamylol > 2-butanol > cyclohexanone > 1-hexanol. Solvent effect analysis shows that the properties of α-LM are more important than those of solvents. The Apelblat equation, λh equation, Wilson model, and NRTL model were used to correlate the experimental values. The root-mean-square deviation (RMSD) and relative average deviation (RAD) of all models were less than 2.68 × 10−2 and 1.41 × 10−6, respectively, implying that the fitted values of four thermodynamic models all agreed well with the experimental values. Moreover, the thermodynamic properties of the dissolution process (i.e., dissolution Gibbs free energy (ΔdisG), molar enthalpy (ΔdisH), and molar entropy (ΔdisS)) for α-LM in selected solvents were determined. The results indicate that ΔdisH/(J/mol) (from 0.2551 to 6.0575) and ΔdisS/(J/mol/K) (from 0.0010 to 0.0207) of α-LM in these solvents are all positive, and the values of ΔdisH and ΔdisS. ΔdisG/(J/mol) (from −0.0184 to −0.6380) are all negative. The values were observed to decrease with rising temperatures, implying that α-LM dissolution is an endothermic, entropy-driven, and spontaneous process. The solid−liquid equilibrium data and dissolution thermodynamics of α-LM were obtained, which provide a basis for industrial production.
Collapse
Affiliation(s)
- Youliang Guan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zujin Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Kui Wu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an 343009, China
| | - Hongbing Ji
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Liu X, Yan S, Li M, Zhang S, Guo G, Yin Q, Tong Z, Chen XD, Wu WD. Spray Dried Levodopa-Doped Powder Potentially for Intranasal Delivery. Pharmaceutics 2022; 14:pharmaceutics14071384. [PMID: 35890279 PMCID: PMC9322363 DOI: 10.3390/pharmaceutics14071384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
This work was aimed to develop levodopa (L-dopa) nasal powder to achieve controllable drug release and high nasal deposition efficiency. A series of uniform microparticles, composed of amorphous L-dopa and excipients of hydroxypropyl methyl cellulose (HPMC), polyvinylpyrrolidone (PVP), or hydroxypropyl-β-cyclodextrin (CD), were fabricated by a self-designed micro-fluidic spray dryer. The effects of excipient type and drug/excipient mass ratio on the particle size, morphology, density, and crystal property, as well as the in vitro performance of drug release, mucoadhesion, and nasal deposition, were investigated. Increased amounts of added excipient, regardless of its type, could accelerate the L-dopa release to different extent. The addition of CD showed the most obvious effect, i.e., ~83% of L-dopa released in 60 min for SD-L1CD2, compared to 37% for raw L-dopa. HPMC could more apparently improve the particle mucoadhesion than PVP and CD, with respective adhesive forces of ~269, 111, and 26 nN for SD-L1H2, -L1P2, and -L1CD2. Nevertheless, the deposition fractions in the olfactory region for such samples were almost the same (~14%), probably ascribable to their quite similar particle aerodynamic diameter (~30 μm). This work demonstrates a feasible methodology for the development of nasal powder.
Collapse
Affiliation(s)
- Xuan Liu
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (X.L.); (S.Y.); (M.L.); (S.Z.); (X.D.C.)
| | - Shen Yan
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (X.L.); (S.Y.); (M.L.); (S.Z.); (X.D.C.)
| | - Mengyuan Li
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (X.L.); (S.Y.); (M.L.); (S.Z.); (X.D.C.)
| | - Shengyu Zhang
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (X.L.); (S.Y.); (M.L.); (S.Z.); (X.D.C.)
| | - Gang Guo
- School of Energy and Environment, Southeast University, Nanjing 210096, China;
| | - Quanyi Yin
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (X.L.); (S.Y.); (M.L.); (S.Z.); (X.D.C.)
- Correspondence: (Q.Y.); (W.D.W.); Tel.: +86-512-6588-2762 (W.D.W.); Fax: +86-512-6588-2750 (W.D.W.)
| | - Zhenbo Tong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China;
- Centre for Simulation and Modelling of Particulate Systems, Southeast University-Monash University Joint Research Institute, Suzhou 215123, China
| | - Xiao Dong Chen
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (X.L.); (S.Y.); (M.L.); (S.Z.); (X.D.C.)
| | - Winston Duo Wu
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (X.L.); (S.Y.); (M.L.); (S.Z.); (X.D.C.)
- Correspondence: (Q.Y.); (W.D.W.); Tel.: +86-512-6588-2762 (W.D.W.); Fax: +86-512-6588-2750 (W.D.W.)
| |
Collapse
|
4
|
Huang Y, Yan S, Zhang S, Yin Q, Chen X, Wu WD. Spray dried hydroxyapatite-based supraparticles with uniform and controllable size and morphology. Colloids Surf B Biointerfaces 2022; 217:112610. [PMID: 35700565 DOI: 10.1016/j.colsurfb.2022.112610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
This work aims to prepare uniform spray dried hydroxyapatite-based (SD HAP-based) supraparticles with controllable morphology via micro-fluidic spray drying. Sodium polyacrylate (PAAS) and sodium chloride (NaCl) were used to prepare the precursor suspensions by regulating the inter-particle repulsive forces and electrostatic shielding effect, respectively. The particle size (D50) and zeta potential of the suspension were highly associated with the mass ratio of HAP to PAAS (mH/mP) and the NaCl concentration (CNaCl), which further had significant effect on the permeability (k) of the droplet shell formed during spray drying and ultimately the supraparticle morphology. D50 ˂ 2 µm and absolute zeta potential ˃ 20 mV, obtained when mH/mP ˂ 100 under low CNaCl, rendered ultralow k and consequently deformed supraparticles; Whereas D50 ˃ 2 µm and absolute zeta potential ˂ 20 mV, achieved by decreasing PAAS amount, i.e. mH/mP ≥ 100 or improving CNaCl to efficiently screen surface net charge of HAP, high k and spherical supraparticles were thus preferentially formed.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shen Yan
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shengyu Zhang
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Quanyi Yin
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Xiaodong Chen
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Winston Duo Wu
- Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
5
|
|