1
|
Starodubtseva N, Poluektova A, Tokareva A, Kukaev E, Avdeeva A, Rimskaya E, Khodzayeva Z. Proteome-Based Maternal Plasma and Serum Biomarkers for Preeclampsia: A Systematic Review and Meta-Analysis. Life (Basel) 2025; 15:776. [PMID: 40430203 PMCID: PMC12113278 DOI: 10.3390/life15050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Proteomics has emerged as a transformative tool in biomedical research, enabling comprehensive characterization of protein profiles in complex biological systems. In preeclampsia (PE) research, quantitative proteomic analyses of plasma and serum have revealed critical insights into disease mechanisms and potential biomarkers. Through a systematic review of 17 studies (2009-2024), we identified 561 differentially expressed plasma/serum proteins (p < 0.05) in PE patients versus healthy controls, with 122 proteins consistently replicated across ≥2 independent studies. Stratified analysis by clinical subtype (early-vs. late-onset PE) demonstrated both concordant and divergent protein expression patterns, reflecting heterogeneity in PE pathophysiology, methodological variations (e.g., sample processing, proteomic platforms), and differences between discovery-phase and targeted validation studies. The trimester-specific biomarker panels proposed here offer a framework for future large-scale, multicenter validation. By integrating advanced proteomic technologies with standardized preanalytical and analytical protocols, these findings advance opportunities for early prediction (first-trimester biomarker signatures); mechanistic insight (complement system involvement); and personalized management (subtype-specific therapeutic targets). This work underscores the potential of proteomics to reshape PE research, from molecular discovery to clinical translation, ultimately improving outcomes for this leading cause of maternal and perinatal morbidity.
Collapse
Affiliation(s)
- Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
| | - Alina Poluektova
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
| | - Alisa Tokareva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
| | - Evgenii Kukaev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Anna Avdeeva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
| | - Elena Rimskaya
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
- Lebedev Physical Institute, 119991 Moscow, Russia
| | - Zulfiya Khodzayeva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.P.); (A.T.); (E.K.); (A.A.); (E.R.); (Z.K.)
| |
Collapse
|
2
|
Staff AC, Costa ML, Dechend R, Jacobsen DP, Sugulle M. Hypertensive disorders of pregnancy and long-term maternal cardiovascular risk: Bridging epidemiological knowledge into personalized postpartum care and follow-up. Pregnancy Hypertens 2024; 36:101127. [PMID: 38643570 DOI: 10.1016/j.preghy.2024.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Cardiovascular disease (CVD) is globally the leading cause of death and disability. Sex-specific causes of female CVD are under-investigated. Pregnancy remains an underinvestigated sex-specific stress test for future CVD and a hitherto missed opportunity to initiate prevention of CVD at a young age. Population-based studies show a strong association between female CVD and hypertensive disorders of pregnancy. This association is also present after other pregnancy complications that are associated with placental dysfunction, including fetal growth restriction, preterm delivery and gestational diabetes mellitus. Few women are, however, offered systematic cardio-preventive follow-up after such pregnancy complications. These women typically seek help from the health system at first clinical symptom of CVD, which may be decades later. By this time, morbidity is established and years of preventive opportunities have been missed out. Early identification of modifiable risk factors starting postpartum followed by systematic preventive measures could improve maternal cardiovascular health trajectories, promoting healthier societies. In this non-systematic review we briefly summarize the epidemiological associations and pathophysiological hypotheses for the associations. We summarize current clinical follow-up strategies, including some proposed by international and national guidelines as well as user support groups. We address modifiable factors that may be underexploited in the postpartum period, including breastfeeding and blood pressure management. We suggest a way forward and discuss the remaining knowledge gaps and barriers for securing the best evidence-based follow-up, relative to available resources after a hypertensive pregnancy complication in order to prevent or delay onset of premature CVD.
Collapse
Affiliation(s)
- Anne Cathrine Staff
- Faculty of Medicine, University of Oslo, PB 1171, Blindern, 0381 Oslo, Norway; Division of Obstetrics and Gynaecology, Oslo University Hospital, PB 4956 Nydalen, 0424 Oslo, Norway.
| | - Maria Laura Costa
- Department of Obstetrics and Gynecology, Universidade Estadual de Campinas (UNICAMP), Campinas/SP, Brazil
| | - Ralf Dechend
- HELIOS Clinic, Berlin, Germany; Experimental and Clinical Research Center, Charité Medical Faculty and Max-Delbrueck Center for Molecular Medicine, and HELIOS Clinic Berlin, Germany
| | - Daniel P Jacobsen
- Faculty of Medicine, University of Oslo, PB 1171, Blindern, 0381 Oslo, Norway; Division of Obstetrics and Gynaecology, Oslo University Hospital, PB 4956 Nydalen, 0424 Oslo, Norway
| | - Meryam Sugulle
- Faculty of Medicine, University of Oslo, PB 1171, Blindern, 0381 Oslo, Norway; Division of Obstetrics and Gynaecology, Oslo University Hospital, PB 4956 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
3
|
Rosół N, Procyk G, Kacperczyk-Bartnik J, Grabowski M, Gąsecka A. N-terminal prohormone of brain natriuretic peptide in gestational hypertension and preeclampsia - State of the art. Eur J Obstet Gynecol Reprod Biol 2024; 297:96-105. [PMID: 38603986 DOI: 10.1016/j.ejogrb.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
N-terminal prohormone of brain natriuretic peptide (NT-proBNP) is a non-active prohormone secreted by ventricular cardiomyocytes into the circulation in response to ventricle overload, mainly due to increased blood volume. The changes in NT-proBNP levels during pregnancy have been investigated in multiple studies. In the case of hypertensive disorders of pregnancy, increased vasoconstriction leads to increased blood pressure and afterload. Together with the volume overload of pregnancy, it leads to higher NT-proBNP secretion. As hypertensive disorders of pregnancy are among the leading causes of prematurity and perinatal mortality, early prediction and diagnosis of gestational hypertension, and preeclampsia are essential for improving maternal and infant prognosis. NT-proBNP has been regarded as a potential biomarker of hypertensive disorders of pregnancy. In this review, we have thoroughly summarized the current data on the prognostic and diagnostic utility of NT-proBNP in patients with gestational hypertension and preeclampsia. NT-proBNP values may help distinguish between non-preeclamptic and preeclamptic patients, even if there are no significant differences in blood pressure. Moreover, in pregnancies complicated by preeclampsia, the value of increased NT-proBNP level is related to the stage and the severity of the disease. Further improvement of our knowledge about NT-proBNP as a diagnostic biomarker and a putative predictor of adverse cardiac events in women with hypertensive disorders of pregnancy should lead to better management of these patients.
Collapse
Affiliation(s)
- Natalia Rosół
- 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Karowa 2, 00-315 Warsaw, Poland.
| | - Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland.
| | - Joanna Kacperczyk-Bartnik
- 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Karowa 2, 00-315 Warsaw, Poland.
| | - Marcin Grabowski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland.
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland.
| |
Collapse
|
4
|
Schuermans A, Truong B, Ardissino M, Bhukar R, Slob EAW, Nakao T, Dron JS, Small AM, Cho SMJ, Yu Z, Hornsby W, Antoine T, Lannery K, Postupaka D, Gray KJ, Yan Q, Butterworth AS, Burgess S, Wood MJ, Scott NS, Harrington CM, Sarma AA, Lau ES, Roh JD, Januzzi JL, Natarajan P, Honigberg MC. Genetic Associations of Circulating Cardiovascular Proteins With Gestational Hypertension and Preeclampsia. JAMA Cardiol 2024; 9:209-220. [PMID: 38170504 PMCID: PMC10765315 DOI: 10.1001/jamacardio.2023.4994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024]
Abstract
Importance Hypertensive disorders of pregnancy (HDPs), including gestational hypertension and preeclampsia, are important contributors to maternal morbidity and mortality worldwide. In addition, women with HDPs face an elevated long-term risk of cardiovascular disease. Objective To identify proteins in the circulation associated with HDPs. Design, Setting, and Participants Two-sample mendelian randomization (MR) tested the associations of genetic instruments for cardiovascular disease-related proteins with gestational hypertension and preeclampsia. In downstream analyses, a systematic review of observational data was conducted to evaluate the identified proteins' dynamics across gestation in hypertensive vs normotensive pregnancies, and phenome-wide MR analyses were performed to identify potential non-HDP-related effects associated with the prioritized proteins. Genetic association data for cardiovascular disease-related proteins were obtained from the Systematic and Combined Analysis of Olink Proteins (SCALLOP) consortium. Genetic association data for the HDPs were obtained from recent European-ancestry genome-wide association study meta-analyses for gestational hypertension and preeclampsia. Study data were analyzed October 2022 to October 2023. Exposures Genetic instruments for 90 candidate proteins implicated in cardiovascular diseases, constructed using cis-protein quantitative trait loci (cis-pQTLs). Main Outcomes and Measures Gestational hypertension and preeclampsia. Results Genetic association data for cardiovascular disease-related proteins were obtained from 21 758 participants from the SCALLOP consortium. Genetic association data for the HDPs were obtained from 393 238 female individuals (8636 cases and 384 602 controls) for gestational hypertension and 606 903 female individuals (16 032 cases and 590 871 controls) for preeclampsia. Seventy-five of 90 proteins (83.3%) had at least 1 valid cis-pQTL. Of those, 10 proteins (13.3%) were significantly associated with HDPs. Four were robust to sensitivity analyses for gestational hypertension (cluster of differentiation 40, eosinophil cationic protein [ECP], galectin 3, N-terminal pro-brain natriuretic peptide [NT-proBNP]), and 2 were robust for preeclampsia (cystatin B, heat shock protein 27 [HSP27]). Consistent with the MR findings, observational data revealed that lower NT-proBNP (0.76- to 0.88-fold difference vs no HDPs) and higher HSP27 (2.40-fold difference vs no HDPs) levels during the first trimester of pregnancy were associated with increased risk of HDPs, as were higher levels of ECP (1.60-fold difference vs no HDPs). Phenome-wide MR analyses identified 37 unique non-HDP-related protein-disease associations, suggesting potential on-target effects associated with interventions lowering HDP risk through the identified proteins. Conclusions and Relevance Study findings suggest genetic associations of 4 cardiovascular disease-related proteins with gestational hypertension and 2 associated with preeclampsia. Future studies are required to test the efficacy of targeting the corresponding pathways to reduce HDP risk.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Buu Truong
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Maddalena Ardissino
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rohan Bhukar
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Eric A. W. Slob
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jacqueline S. Dron
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Aeron M. Small
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - So Mi Jemma Cho
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Zhi Yu
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Whitney Hornsby
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Tajmara Antoine
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Kim Lannery
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Darina Postupaka
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Kathryn J. Gray
- Division of Maternal-Fetal Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University, New York, New York
| | - Adam S. Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- BHF Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Malissa J. Wood
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
- Lee Health, Fort Myers, Florida
| | - Nandita S. Scott
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Colleen M. Harrington
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Amy A. Sarma
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Emily S. Lau
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Jason D. Roh
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - James L. Januzzi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
- Baim Institute for Clinical Research, Boston, Massachusetts
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Michael C. Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| |
Collapse
|
5
|
Adibi JJ, Zhao Y, Koistinen H, Mitchell RT, Barrett ES, Miller R, O'Connor TG, Xun X, Liang HW, Birru R, Smith M, Moog NK. Molecular pathways in placental-fetal development and disruption. Mol Cell Endocrinol 2024; 581:112075. [PMID: 37852527 PMCID: PMC10958409 DOI: 10.1016/j.mce.2023.112075] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
The first trimester of pregnancy ranks high in priority when minimizing harmful exposures, given the wide-ranging types of organogenesis occurring between 4- and 12-weeks' gestation. One way to quantify potential harm to the fetus in the first trimester is to measure a corollary effect on the placenta. Placental biomarkers are widely present in maternal circulation, cord blood, and placental tissue biopsied at birth or at the time of pregnancy termination. Here we evaluate ten diverse pathways involving molecules expressed in the first trimester human placenta based on their relevance to normal fetal development and to the hypothesis of placental-fetal endocrine disruption (perturbation in development that results in abnormal endocrine function in the offspring), namely: human chorionic gonadotropin (hCG), thyroid hormone regulation, peroxisome proliferator activated receptor protein gamma (PPARγ), leptin, transforming growth factor beta, epiregulin, growth differentiation factor 15, small nucleolar RNAs, serotonin, and vitamin D. Some of these are well-established as biomarkers of placental-fetal endocrine disruption, while others are not well studied and were selected based on discovery analyses of the placental transcriptome. A literature search on these biomarkers summarizes evidence of placenta-specific production and regulation of each biomarker, and their role in fetal reproductive tract, brain, and other specific domains of fetal development. In this review, we extend the theory of fetal programming to placental-fetal programming.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, University of Pittsburgh School of Public Health, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yaqi Zhao
- St. Jude's Research Hospital, Memphis, TN, USA
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Rod T Mitchell
- Department of Paediatric Endocrinology, Royal Hospital for Children and Young People, Edinburgh BioQuarter, Edinburgh, UK
| | - Emily S Barrett
- Environmental and Population Health Bio-Sciences, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Richard Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Hai-Wei Liang
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rahel Birru
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Megan Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nora K Moog
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|