1
|
Peng J, Feinstein D, DeSimone S, Gentile P. A Review of the Tear Film Biomarkers Used to Diagnose Sjogren's Syndrome. Int J Mol Sci 2024; 25:10380. [PMID: 39408709 PMCID: PMC11476667 DOI: 10.3390/ijms251910380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
This literature review looks at Sjogren's Syndrome (SS), a chronic autoimmune disorder affecting exocrine glands, particularly the lacrimal and salivary glands. SS manifests as ocular and oral dryness, with severe complications like visual dysfunction and corneal perforation, as well as systemic implications, such as interstitial lung disease and lymphoma. This review explores the use of tear film biomarkers to diagnose SS, emphasizing the significance of their identification in aiding clinical diagnosis and differentiation from other diseases. This study identified and analyzed 15 papers, encompassing 1142 patients and employing various tear sample collection methods. Tear biomarkers were categorized by function and explored in-depth. Categories include (1) antimicrobials, antivirals, and antifungals; (2) components of immune regulation; (3) components that regulate metabolic processes; and (4) inflammatory markers. Noteworthy findings include the potential diagnostic values of tear lysozyme, lactoferrin, dinucleoside polyphosphates, cathepsin, defensin, antibodies, epidermal fatty acid-binding protein, HLA-DR, ADAM10, aquaporin 5, and various miRNAs and mRNAs. Overall, our understanding of SS tear film composition is enhanced, providing valuable insights into the pathogenesis of SS and offering a foundation for future diagnostic and therapeutic advancements in autoimmune conditions affecting the ocular surface.
Collapse
Affiliation(s)
- Jason Peng
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA;
| | - David Feinstein
- Department of Rheumatology, Cooper University Hospital, Camden, NJ 08103, USA; (D.F.); (P.G.)
| | - Salvatore DeSimone
- Department of Ophthalmology, Cooper University Hospital, Camden, NJ 08103, USA
| | - Pietro Gentile
- Department of Rheumatology, Cooper University Hospital, Camden, NJ 08103, USA; (D.F.); (P.G.)
| |
Collapse
|
2
|
Carracedo G, Garcia-Gonzalo C, Perez-Luque MA, Martinez-Aguila A, Carpena-Torres C. Efficacy and safety of artificial tears containing Artemia salina extract with dinucleotides for dry eye. Clin Exp Optom 2024:1-7. [PMID: 38653499 DOI: 10.1080/08164622.2024.2341841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
CLINICAL RELEVANCE This clinical trial was conducted as part of the marketing procedures for a medical device comprising artificial tears containing Artemia salina extract with dinucleotides. These molecules previously demonstrated secretagogue properties by enhancing the production of aqueous, mucinous, and lipidic components of the tears. BACKGROUND After confirming the efficacy of artificial tears containing Artemia salina extract in an animal model, this study proceeded to evaluate their efficacy and safety on dry eye participants. METHODS A randomised controlled clinical trial was performed on 36 dry eye participants (41.6 ± 20.6 years). Half of the participants were treated with saline solution as a placebo for four weeks, while the other half were treated with artificial tears containing Artemia salina, randomly assigned. After a wash-out period of two weeks, the treatments were crossed for another four weeks. Participants were assessed at baseline and after one week, two weeks, and four weeks. Efficacy variables were: eye dryness frequency (primary), eye comfort, visual satisfaction, tear secretion, tear break-up time, corneal staining, conjunctival staining, and conjunctival hyperaemia. Safety variables were: high- and low-contrast visual acuity, intraocular pressure, and eye fundus images analysis. RESULTS Compared with the baseline, the saline solution showed no significant changes in any of the studied variables after four weeks of treatment (p ≥ 0.05). However, the topical instillation of the artificial tears with Artemia salina for four weeks significantly improved eye dryness frequency (p = 0.014) and corneal staining (p = 0.010). No systemic or ocular adverse events were reported during the clinical trial. CONCLUSION The topical instillation of artificial tears containing Artemia salina in mild to moderate dry eye participants for four weeks slightly improved their symptoms related to eye dryness frequency and reduced corneal damage, with no undesirable side effects observed.
Collapse
Affiliation(s)
- Gonzalo Carracedo
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Cristina Garcia-Gonzalo
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Maria A Perez-Luque
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Martinez-Aguila
- Ocupharm Research Group, Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Carlos Carpena-Torres
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Cao X, Du X, Jiao H, An Q, Chen R, Fang P, Wang J, Yu B. Carbohydrate-based drugs launched during 2000 -2021. Acta Pharm Sin B 2022; 12:3783-3821. [PMID: 36213536 PMCID: PMC9532563 DOI: 10.1016/j.apsb.2022.05.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
Carbohydrates are fundamental molecules involved in nearly all aspects of lives, such as being involved in formating the genetic and energy materials, supporting the structure of organisms, constituting invasion and host defense systems, and forming antibiotics secondary metabolites. The naturally occurring carbohydrates and their derivatives have been extensively studied as therapeutic agents for the treatment of various diseases. During 2000 to 2021, totally 54 carbohydrate-based drugs which contain carbohydrate moities as the major structural units have been approved as drugs or diagnostic agents. Here we provide a comprehensive review on the chemical structures, activities, and clinical trial results of these carbohydrate-based drugs, which are categorized by their indications into antiviral drugs, antibacterial/antiparasitic drugs, anticancer drugs, antidiabetics drugs, cardiovascular drugs, nervous system drugs, and other agents.
Collapse
Affiliation(s)
- Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xiaojing Du
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Heng Jiao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Quanlin An
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ruoxue Chen
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Pengfei Fang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Wang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Doctor MB, Basu S. Lacrimal Gland Insufficiency in Aqueous Deficiency Dry Eye Disease: Recent Advances in Pathogenesis, Diagnosis, and Treatment. Semin Ophthalmol 2022; 37:801-812. [PMID: 35587465 DOI: 10.1080/08820538.2022.2075706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aqueous deficiency dry eye disease is a chronic and potentially sight-threatening condition, that occurs due to the dysfunction of the lacrimal glands. The aim of this review was to describe the various recent developments in the understanding, diagnosis and treatment of lacrimal gland insufficiency in aqueous deficiency dry eye disease. METHODS A MEDLINE database search using PubMed was performed using the keywords: "dry eye disease/syndrome", "aqueous deficient/deficiency dry eye disease", "lacrimal gland" and "Sjogren's syndrome". After scanning through 750 relevant abstracts, 73 eligible articles published in the English language from 2016 to 2021 were included in the review. RESULTS Histopathological and ultrastructural studies have revealed new insights into the pathogenesis of cicatrising conjunctivitis-induced aqueous deficiency, where the lacrimal gland acini remain uninvolved and retain their secretory property, while significant ultrastructural changes in the gland have been observed. Recent advances in diagnosis include the techniques of direct clinical assessment of the lacrimal gland morphology and secretion, tear film osmolarity, tear film lysozyme and lactoferrin levels, tear film interferometry and lacrimal gland confocal microscopy. Developments in the treatment of aqueous deficiency dry eye disease, apart from the nanoparticle-based tear substitutes, include secretagogues like diquafosol tetrasodium and rebamipide, anti-inflammatory topical agents like nanomicellar form of cyclosporine and lifitegrast, scleral contact lenses, neurostimulation, and acupuncture for increasing the amount of tear production, minor salivary gland transplantation, faecal microbial transplantation, lacrimal gland regeneration and mesenchymal stem cell therapy. CONCLUSIONS Significant advances in the understanding, diagnosis and management of lacrimal gland insufficiency and its role in aqueous deficiency dry eye disease have taken place within the second half of the last decade. Of which, translational breakthroughs in terms of newer drug formulations and regenerative medicine are most promising.
Collapse
Affiliation(s)
- Mariya B Doctor
- Academy of Eye Care Education, L V Prasad Eye Institute, Hyderabad, India.,The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Sayan Basu
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
5
|
Carpena-Torres C, Pintor J, Huete-Toral F, Martin-Gil A, Rodríguez-Pomar C, Martínez-Águila A, Carracedo G. Efficacy of Artificial Tears Based on an Extract of Artemia salina Containing Dinucleotides in a Rabbit Dry Eye Model. Int J Mol Sci 2021; 22:ijms222111999. [PMID: 34769429 PMCID: PMC8584318 DOI: 10.3390/ijms222111999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Artemia salina is a brine shrimp containing high concentrations of dinucleotides, molecules with properties for dry eye treatment. For this reason, the purpose of the study was to evaluate the effect of the artificial tears based on an extract of Artemia salina in a rabbit dry eye model. (2) Methods: A prospective and randomized study was carried out. Twenty rabbits were divided into 4 groups (n = 5, each group): healthy rabbits, dry eye rabbits, dry eye rabbits treated with hypromellose (HPMC), and dry eye rabbits treated with Artemia salina. Dry eye was induced by the topical instillation of 0.2% benzalkonium chloride. The measurements were performed before and after the treatment for 5 consecutive days. (3) Results: The topical instillation of artificial tears containing Artemia salina showed beneficial effects on tear secretion, tear break-up time, corneal staining, the density of Goblet cells, heigh of mucin cloud secreted by these cells, and mRNA levels of IL-1β and MMP9 in conjunctival cells. Compared with the HPMC, there was a statistically significant improvement (p < 0.05) with the Artemia salina in all the variables under study, except for the conjunctival hyperemia, density of Goblet cells, and mRNA levels of IL-6. (4) Conclusions: The potential of artificial tears based on Artemia salina as a secretagogue agent for dry eye treatment was confirmed, opening the door for future clinical trials and studies to extrapolate the findings for dry eye patients.
Collapse
Affiliation(s)
- Carlos Carpena-Torres
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (C.C.-T.); (A.M.-G.); (C.R.-P.)
| | - Jesus Pintor
- Ocupharm Research Group, Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (J.P.); (F.H.-T.); (A.M.-Á.)
| | - Fernando Huete-Toral
- Ocupharm Research Group, Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (J.P.); (F.H.-T.); (A.M.-Á.)
| | - Alba Martin-Gil
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (C.C.-T.); (A.M.-G.); (C.R.-P.)
| | - Candela Rodríguez-Pomar
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (C.C.-T.); (A.M.-G.); (C.R.-P.)
| | - Alejandro Martínez-Águila
- Ocupharm Research Group, Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (J.P.); (F.H.-T.); (A.M.-Á.)
| | - Gonzalo Carracedo
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain; (C.C.-T.); (A.M.-G.); (C.R.-P.)
- Correspondence:
| |
Collapse
|
6
|
Abstract
Glaucoma is an optical neuropathy associated to a progressive degeneration of retinal ganglion cells with visual field loss and is the main cause of irreversible blindness in the world. The treatment has the aim to reduce intraocular pressure. The first therapy option is to instill drugs on the ocular surface. The main limitation of this is the reduced time of the drug staying on the cornea. This means that high doses are required to ensure its therapeutic effect. A drug-loaded contact lens can diffuse into the post lens tear film in a constant and prolonged flow, resulting in an increased retention of the drug on the surface of the cornea for up to 30 min and thus providing a higher drug bioavailability, increasing the therapeutic efficacy, reducing the amount of administered drug, and thereby provoking fewer adverse events. Several different systems of drug delivery have been studied in recent decades; ranging from more simple methods of impregnating the lenses, such as soaking, to more complex ones, such as molecular imprinting have been proposed. Moreover, different drugs, from those already commercially available to new substances such as melatonin have been studied to improve the glaucoma treatment efficacy. This review describes the role of contact lenses as an innovative drug delivery system to treat glaucoma.
Collapse
|
7
|
Carpena-Torres C, Pintor J, Huete-Toral F, Rodriguez-Pomar C, Martínez-Águila A, Carracedo G. Preclinical Development of Artificial Tears Based on an Extract of Artemia Salina Containing Dinucleotides in Rabbits. Curr Eye Res 2020; 46:174-178. [PMID: 32602751 DOI: 10.1080/02713683.2020.1789665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To evaluate the preclinical efficacy of eye drops based on an extract of Artemia salina on the ocular surface of rabbits. Tear secretion, tear break-up time and corneal staining were measured. MATERIAL AND METHODS A preclinical and short-term prospective study was performed. Twenty New Zealand white rabbits were divided into five groups, with four rabbits per group, each receiving a different concentration of Artemia salina. In each rabbit, an extract of Artemia salina (2%, 4%, 6%, 8% or 10%) was randomly instilled in one eye and saline solution (negative control) in the other eye. Tear secretion, tear break-up time and corneal staining were measured before and after the instillation of five drops per eye (one drop per hour) on the same day. RESULTS In tear secretion, there was an increase of 43.88 ± 6.73% with 4% Artemia salina in comparison with its baseline measurement (P = .049). The rest of the groups did not show differences (P ≥ 0.05). For tear break-up time, none of the groups showed differences (P ≥ 0.05), while for corneal staining score, there was an improvement of 0.88 ± 0.83 with 4% Artemia salina (P = .038) and a deterioration of 0.50 ± 0.83 with control solution (P = .008). CONCLUSIONS Short-term instillation of eye drops with 4% Artemia salina produced both stimulation of tear secretion and a slight improvement of physiological corneal staining. Besides, all the doses of up to 10% Artemia salina did not produce undesirable side effects on the ocular surface. Therefore, these eye drops are presented as a possible new treatment for dry eye due to their secretagogue properties and ocular surface regeneration.
Collapse
Affiliation(s)
- Carlos Carpena-Torres
- Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid , Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid , Madrid, Spain
| | - Fernando Huete-Toral
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid , Madrid, Spain
| | - Candela Rodriguez-Pomar
- Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid , Madrid, Spain
| | - Alejandro Martínez-Águila
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid , Madrid, Spain
| | - Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid , Madrid, Spain
| |
Collapse
|
8
|
Appy L, Chardet C, Peyrottes S, Roy B. Synthetic Strategies for Dinucleotides Synthesis. Molecules 2019; 24:molecules24234334. [PMID: 31783537 PMCID: PMC6930578 DOI: 10.3390/molecules24234334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Dinucleoside 5′,5′-polyphosphates (DNPs) are endogenous substances that play important intra- and extracellular roles in various biological processes, such as cell proliferation, regulation of enzymes, neurotransmission, platelet disaggregation and modulation of vascular tone. Various methodologies have been developed over the past fifty years to access these compounds, involving enzymatic processes or chemical procedures based either on P(III) or P(V) chemistry. Both solution-phase and solid-support strategies have been developed and are reported here. Recently, green chemistry approaches have emerged, offering attracting alternatives. This review outlines the main synthetic pathways for the preparation of dinucleoside 5′,5′-polyphosphates, focusing on pharmacologically relevant compounds, and highlighting recent advances.
Collapse
|
9
|
Carracedo G, Peral A. Suso Pintor (1964-2019): The art of making science look easy. JOURNAL OF OPTOMETRY 2019; 12:141-142. [PMID: 31272665 PMCID: PMC6612025 DOI: 10.1016/j.optom.2019.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optic and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| | - Assumpta Peral
- Department of Optometry and Vision, Faculty of Optic and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Scheidecker S, Bär S, Stoetzel C, Geoffroy V, Lannes B, Rinaldi B, Fischer F, Becker HD, Pelletier V, Pagan C, Acquaviva-Bourdain C, Kremer S, Mirande M, Tranchant C, Muller J, Friant S, Dollfus H. Mutations in KARS cause a severe neurological and neurosensory disease with optic neuropathy. Hum Mutat 2019; 40:1826-1840. [PMID: 31116475 DOI: 10.1002/humu.23799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 11/09/2022]
Abstract
Mutations in genes encoding aminoacyl-tRNA synthetases have been reported in several neurological disorders. KARS is a dual localized lysyl-tRNA synthetase and its cytosolic isoform belongs to the multiple aminoacyl-tRNA synthetase complex (MSC). Biallelic mutations in the KARS gene were described in a wide phenotypic spectrum ranging from nonsyndromic deafness to complex impairments. Here, we report on a patient with severe neurological and neurosensory disease investigated by whole-exome sequencing and found to carry biallelic mutations c.683C>T (p.Pro228Leu) and c.871T>G (p.Phe291Val), the second one being novel, in the KARS gene. The patient presented with an atypical clinical presentation with an optic neuropathy not previously reported. At the cellular level, we show that cytoplasmic KARS was expressed at a lower level in patient cells and displayed decreased interaction with MSC. In vitro, these two KARS variants have a decreased aminoacylation activity compared with wild-type KARS, the p.Pro228Leu being the most affected. Our data suggest that dysfunction of cytoplasmic KARS resulted in a decreased level of translation of the nuclear-encoded lysine-rich proteins belonging to the respiratory chain complex, thus impairing mitochondria functions.
Collapse
Affiliation(s)
- Sophie Scheidecker
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Séverine Bär
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Université de Strasbourg, CNRS, Strasbourg, France
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France
| | - Béatrice Lannes
- Service d'Anatomo-pathologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Bruno Rinaldi
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Université de Strasbourg, CNRS, Strasbourg, France
| | - Frédéric Fischer
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Université de Strasbourg, CNRS, Strasbourg, France
| | - Hubert D Becker
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valérie Pelletier
- Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Cécile Pagan
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Cécile Acquaviva-Bourdain
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Stéphane Kremer
- Service de Neuroradiologie/Imagerie 2, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Marc Mirande
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christine Tranchant
- Service de Neurologie Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Jean Muller
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sylvie Friant
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France.,Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Pérez de Lara MJ, Guzmán-Aranguez A, Gómez-Villafuertes R, Gualix J, Miras-Portugal MT, Pintor J. Increased Ap 4A levels and ecto-nucleotidase activity in glaucomatous mice retina. Purinergic Signal 2018; 14:259-270. [PMID: 29948577 DOI: 10.1007/s11302-018-9612-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/22/2018] [Indexed: 10/14/2022] Open
Abstract
The pathogenesis of glaucoma involves numerous intracellular mechanisms including the purinergic system contribution. Furthermore, the presence and release of nucleotides and dinucleotides during the glaucomatous damage and the maintenance of degradation machinery through ecto-nucleotidase activity are participating in the modulation of the suitable extracellular complex balance. The aim of this study was to investigate the levels of diadenosine tetraphosphate (Ap4A) and the pattern of ecto-nucleotidase activity expression in glaucomatous retinas during the progress the pathology. Ap4A levels were analyzed by HPLC in glaucomatous retinas from the DBA/2J mice at 3, 9, 15, and 23 months of age. For that, retinas were dissected as flattened whole-mounts and stimulated in Ringer buffer with or without 59 mM KCl. NPP1 expression was analyzed by RT-PCR and western blot and its distribution was assessed by immunohistochemistry studies examined under confocal microscopy. Glaucomatous mice exhibited Ap4A values, which changed in stimulated retinas as long as the pathology progressed varying from 0.73 ± 0.04 (3 months) to 0.170 ± 0.05 pmol/mg retina (23 months). Concomitantly, NPP1 expression was significantly increased (82.15%) in the DBA/2J mice at 15 months. Furthermore, immunohistochemical studies showed that NPP1 labeling was stronger in OPL and IPL labeling tangentially in the vitreal part of the retina and was upregulated at 15 months of age. Our findings demonstrate that Ap4A decreased levels may be related with exacerbated activity of NPP1 protein in glaucomatous degeneration and in this way contributing to elucidate different mechanisms involved in retinal impairment in glaucomatous degeneration.
Collapse
Affiliation(s)
- María J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, 28037, Madrid, Spain
| | - Ana Guzmán-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, 28037, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Av/ Puerta del Hierro s/n, 28040, Madrid, Spain
| | - Javier Gualix
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Av/ Puerta del Hierro s/n, 28040, Madrid, Spain
| | - María Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Av/ Puerta del Hierro s/n, 28040, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, 28037, Madrid, Spain.
| |
Collapse
|
12
|
Xu P, Feng X, Luan H, Wang J, Ge R, Li Z, Bian J. Current knowledge on the nucleotide agonists for the P2Y2 receptor. Bioorg Med Chem 2017; 26:366-375. [PMID: 29254895 DOI: 10.1016/j.bmc.2017.11.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). P2Y2 receptors are widely expressed and play important roles in multiple functionalities. Diquafosol tetrasodium, known as INS365, which was the first P2Y2 receptor agonists that had been approved in April 2010 and launched in Japan by Santen Pharmaceuticals. Besides, a series of similar agonists for the P2Y2 receptor are undergoing development to cure different diseases related to the P2Y2 receptor. This article illustrated the structure and functions of the P2Y2 receptor and focused on several kinds of agonists about their molecular structures, research progress and chemical synthesis methods. Last but not the least, we summarized the structures-activity relationship (SAR) of agonists for the P2Y2 receptor and expected more efficient agonists for the P2Y2 receptor.
Collapse
Affiliation(s)
- Pengfei Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China; Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xi Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China; Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hongyu Luan
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China; Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jubo Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China; Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Raoling Ge
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China; Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
13
|
Rodríguez-Pomar C, Pintor J, Colligris B, Carracedo G. Therapeutic inhibitors for the treatment of dry eye syndrome. Expert Opin Pharmacother 2017; 18:1855-1865. [PMID: 29115899 DOI: 10.1080/14656566.2017.1403584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Dry eye disease (DED), defined as a multifactorial disease of tears and ocular surface, results in symptoms of discomfort, ocular irritation, visual disturbance and tear film instability. This syndrome is accompanied of ocular surface inflammation and it is produced by a deficient activity of the lacrimal functional unit. In addition, it is associated with systemic autoimmune diseases such as Sjögren´s Syndrome, rheumatoid arthritis, systemic lupus erythematosus and some drug administration. The treatment of dry eye disease is based on the typical signs and symptoms of dry eye, which are associated with hyperosmolarity, ocular surface inflammation, discomfort, visual disturbance, and tear film instability. Areas covered: This review is focused on synthetic drugs currently used in clinical practice, from phase III development onwards to treat the ocular surface signs and symptoms of dry eye disease. Expert opinion: The multifactorial disease and the lack of correlation between signs and symptoms imply that not all the pharmacological approaches will be successful for dry eye. The correct design of the clinical trials, with appropriate endpoints, and the type of dry eye under study are complicated but mandatory. The anti-inflammatory and secretagogues drugs are both the main compounds to currently treat the dry eye disease.
Collapse
Affiliation(s)
- Candela Rodríguez-Pomar
- a Department of Optics II (Optometry and Vision), Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain.,b Ocupharm Group Research; Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain
| | - Jesus Pintor
- b Ocupharm Group Research; Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain
| | - Basilio Colligris
- b Ocupharm Group Research; Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain
| | - Gonzalo Carracedo
- a Department of Optics II (Optometry and Vision), Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain.,b Ocupharm Group Research; Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
14
|
Crooke A, Guzman-Aranguez A, Carracedo G, de Lara MJP, Pintor J. Understanding the Presence and Roles of Ap 4A (Diadenosine Tetraphosphate) in the Eye. J Ocul Pharmacol Ther 2017; 33:426-434. [PMID: 28414592 DOI: 10.1089/jop.2016.0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Diadenosine tetraphosphate abbreviated Ap4A is a naturally occurring dinucleotide, which is present in most of the ocular fluids. Due to its intrinsic resistance to enzyme degradation compared to mononucleotides, this molecule can exhibit profound actions on ocular tissues, including the ocular surface, ciliary body, trabecular meshwork, and probably the retina. The actions of Ap4A are mostly carried out by P2Y2 receptors, but the participation of P2X2 and P2Y6 in processes such as the regulation of intraocular pressure (IOP), together with the P2Y2, is pivotal. Beyond the physiological role, this dinucleotide can present on the ocular surface keeping a right production of tear secretion or regulating IOP. It is important to note that exogenous application of Ap4A to cells or animal models can significantly modify pathophysiological conditions and thus is an attractive therapeutic molecule. The ocular location where Ap4A actions have not been fully elucidated is in the retina. Although some analogues show interesting actions on pathological situations such as retinal detachment, little is known about the real effect of this dinucleotide, this being one of the challenges that require pursuing in the near future.
Collapse
Affiliation(s)
- Almudena Crooke
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| | - Ana Guzman-Aranguez
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| | - Gonzalo Carracedo
- 2 Departamento de Optometría y Visión, F. Óptica, Universidad Complutense de Madrid , Madrid, Spain
| | - Maria J Perez de Lara
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| | - Jesus Pintor
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| |
Collapse
|