1
|
Pan M, Zhang Z, Shang L. Smart Contact Lenses: Disease Monitoring and Treatment. RESEARCH (WASHINGTON, D.C.) 2025; 8:0611. [PMID: 39931295 PMCID: PMC11808174 DOI: 10.34133/research.0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Smart contact lenses (SCLs), an innovative evolution of conventional contact lenses, have recently attracted increasing attention for their substantial potential for use in the healthcare field. With advancements in materials science and medical technology, SCLs have integrated electronic information technology with biomedical engineering to enable the incorporation of various medical functionalities. Recent developments have focused on applying SCLs to provide intelligent, efficient, and personalized healthcare solutions in the surveillance, diagnosis, and treatment of chronic ocular surface inflammation, glaucoma, and diabetes complications.
Collapse
Affiliation(s)
- Meidie Pan
- Department of Ophthalmology,
Eye and ENT Hospital of Fudan University, Shanghai 200032, China
| | - Zhuohao Zhang
- Institutes of Biomedical Sciences,
Fudan University, Shanghai 200032, China
| | - Luoran Shang
- Institutes of Biomedical Sciences,
Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Situ P, Begley C, Simpson T. The roles of neural adaptation and sensitization in contact lens discomfort. Ocul Surf 2024; 34:132-139. [PMID: 39047906 DOI: 10.1016/j.jtos.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE To investigate the roles of neural adaptation and sensitization in contact lens discomfort (CLD). METHODS Cooling stimuli (20 °C) were applied to the cornea in a group comprising 24 symptomatic and 25 asymptomatic contact lens (CL) wearers as well as 15 non-CL wearing controls, using a computerized Belmonte esthesiometer. The adaptation paradigm consisted of 20 repetitive stimuli at threshold, sub- and supra-threshold levels. The sensitization paradigm involved five levels of suprathreshold stimuli ranging between 1x to 2x threshold. Following each stimulus, participants rated the sensation magnitude regarding intensity, coolness and irritation. Measurements were taken with habitual CL (BL_CL), after 2 weeks of no-CL (No_CL) and after restarting habitual CL wear (ReSt_CL). RESULTS The symptomatic subjects exhibited a lower threshold but reported enhanced sensations during the adaptation and sensitization paradigm, compared to the asymptomatic and control groups (all p ≤ 0.021). At the BL_CL and ReSt_CL visits, they showed increased ratings to repeated subthreshold stimuli (p = 0.025) and greater irritation during the sensitization paradigm (p ≤ 0.032). Ratings in asymptomatic and control groups were relatively unchanged over time (p ≥ 0.181). Logistic regression revealed a link between the augmented sensory responses and increased likelihood with CLD. CONCLUSION The maladaptive sensory responses seen in CLD subjects, with reduced adaptation and heightened sensitization to ocular surface stimulation, suggest an imbalance between sensitization and adaptation in CLD. As CLD may represent a reversible subcategory of dry eye, it can serve as a human dry eye model for studying the neurosensory effect of ocular surface stimulation.
Collapse
Affiliation(s)
- Ping Situ
- School of Optometry, Indiana University, Bloomington, IN, USA.
| | - Carolyn Begley
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Trefford Simpson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Zou H, Hong Y, Xu B, Wang M, Xie H, Wang Y, Lin Q. Multifunctional Cerium Oxide Nanozyme for Synergistic Dry Eye Disease Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34757-34771. [PMID: 38946068 DOI: 10.1021/acsami.4c07390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Dry eye disease (DED) is a chronic multifactorial ocular surface disease mainly caused by the instability of tear film, characterized by a series of ocular discomforts and even visual disorders. Oxidative stress has been recognized as an upstream factor in DED development. Diquafosol sodium (DQS) is an agonist of the P2Y2 receptor to restore the integrity/stability of the tear film. With the ability to alternate between Ce3+ and Ce4+, cerium oxide nanozymes could scavenge overexpressed reactive oxygen species (ROS). Hence, a DQS-loaded cerium oxide nanozyme was designed to boost the synergistic treatment of DED. Cerium oxide with branched polyethylenimine-graft-poly(ethylene glycol) as nucleating agent and dispersant was fabricated followed with DQS immobilization via a dynamic phenylborate ester bond, obtaining the DQS-loaded cerium oxide nanozyme (defined as Ce@PBD). Because of the ability to mimic the cascade processes of superoxide dismutase and catalase, Ce@PBD could scavenge excessive accumulated ROS, showing strong antioxidant and anti-inflammatory properties. Meanwhile, the P2Y2 receptors in the conjunctival cells could be stimulated by DQS in Ce@PBD, which can relieve the incompleteness and instability of the tear film. The animal experiments demonstrated that Ce@PBD significantly restored the defect of the corneal epithelium and increased the number of goblet cells, with the promotion of tear secretion, which was the best among commercial DQS ophthalmic solutions.
Collapse
Affiliation(s)
- Haoyu Zou
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yueze Hong
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoqi Xu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengting Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hongying Xie
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yajia Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
4
|
Pastor-Zaplana JÁ, Gallar J, Acosta MC. Functional Changes of the Ocular Surface Sensory Nerves Due to Contact Lens Use in Young Symptomatic and Asymptomatic Users. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 37938935 PMCID: PMC10637199 DOI: 10.1167/iovs.64.14.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Purpose The purpose of this study was to analyze the differences in corneal sensory nerve functionality in young asymptomatic (CL-A) and symptomatic (CL-S) contact lens (CL) users. Methods CL wearers (23.8 ± 1.0 years, n = 31) were classified as CL-S with an Ocular Surface Disease Index (OSDI) ≥ 13 (n = 14) or CL-A. Users of eye glasses (EG; 24.5 ± 0.8 years, n = 29) with OSDI < 13 participated as controls. The sensations evoked by mechanical, chemical (gas esthesiometer), and cold (4°C saline drops) stimuli were measured using the Visual Analogue Scales (VASs). Moreover, tear volume, tear break up time (TBUT), blinking frequency (BF), and ocular surface temperature (OST; IR thermography) were also measured. Results Mechanical and chemical stimuli produced similar scores in the CL-A and EG participants, although the CL-A subjects referred to stronger irritation (p < 0.05). Likewise, the VAS intensity in response to cold stimuli did not differ between CL-A and EG subjects, while the ability to detect cold was significantly worse in CL-S users (p < 0.05). CL-A users had a similar tear volume, a higher BF (p < 0.01) and shorter TBUT (p < 0.001) to EG wearers, and blinking and TBUT were also altered significantly in CL-S users (p < 0.01). Interestingly, the OST was significantly lower in CL-A users (p < 0.05) than in EG wearers, but not in CL-S users. Conclusions Using CLs modifies corneal sensitivity, blinking and tearing in young volunteers. Even if they have yet to develop clinical signs of inflammation, they display changes in corneal sensitivity consistent with the sensitization of corneal nociceptors and the inhibition cold thermoreceptors, phenomena that occur under inflammatory conditions. The differences in corneal sensitivity and OST between CL-A and CL-S users could reflect the extent of nerve damage and inflammation at the ocular surface.
Collapse
Affiliation(s)
- José Ángel Pastor-Zaplana
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
- Departamento de Patología y Cirugía, Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
- Instituto de Investigación Biomédica y Sanitaria de Alicante, Alicante, Spain
| | - M. Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| |
Collapse
|
5
|
Chen E, Rueff E, Nguyen AL. Impact of Mask-Associated Dry Eye on Symptom Score. Eye Contact Lens 2023; 49:433-437. [PMID: 37363998 DOI: 10.1097/icl.0000000000001009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVES Owing to widespread mask use during the COVID-19 pandemic and clinical reports tying mask use with dryness, this study endeavors to determine if mask use is linked to symptoms of dry eye. METHODS A prospective, cross-sectional survey study was performed. The survey used a modified Standard Patient Evaluation of Eye Dryness Questionnaire (SPEED, TearScience, Morrisville, NC) within 15 min of the beginning and discontinuation of mask wear. The survey also asked about mask wear time, mask style, visual correction, age, and gender. RESULTS The change in SPEED scores was statistically significant ( P =0.03) between participants with mild SPEED score at baseline (0-9) versus severe SPEED score at baseline (10-28) (n=77: 59 female, 16 male, 1 nonbinary, and 1 declined to answer; range 22-55 years old). Participants in the severe group used masks with nose wire more than the mild group ( P =0.03). CONCLUSIONS In this sample, dry eye symptoms were most exacerbated with mask wear in those that had mild initial symptom scores compared with those with severe symptom scores at baseline. The use of nose wire masks may be protective, as the severe group used this type more and had significantly less exacerbation of symptoms postmask wear.
Collapse
Affiliation(s)
- Elaine Chen
- SCCO at MBKU (E.C., E.R., A.L.N.), Fullerton, CA; and California State University (A.L.N.), Fullerton, CA
| | | | | |
Collapse
|
6
|
Kim YH, Graham AD, Li W, Dursch TJ, Peng CC, Radke CJ, Lin MC. Tear-film evaporation flux and its relationship to tear properties in symptomatic and asymptomatic soft-contact-lens wearers. Cont Lens Anterior Eye 2023; 46:101850. [PMID: 37137757 DOI: 10.1016/j.clae.2023.101850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 02/18/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE With soft-contact-lens wear, evaporation of the pre-lens tear film affects the osmolarity of the post-lens tear film and this can introduce a hyperosmotic environment at the corneal epithelium, leading to discomfort. The purposes of the study are to ascertain whether there are differences in evaporation flux (i.e., the evaporation rate per unit area) between symptomatic and asymptomatic soft-contact-lens wearers, to assess the repeatability of a flow evaporimeter, and to assess the relationship between evaporation fluxes, tear properties, and environmental conditions. METHODS Closed-chamber evaporimeters commonly used in ocular-surface research do not control relative humidity and airflow, and, therefore, misestimate the actual tear-evaporation flux. A recently developed flow evaporimeter overcomes these limitations and was used to measure accurate in-vivo tear-evaporation fluxes with and without soft-contact-lens wear for symptomatic and asymptomatic habitual contact-lens wearers. Concomitantly, lipid-layer thickness, ocular-surface-temperature decline rate (i.e., °C/s), non-invasive tear break-up time, tear-meniscus height, Schirmer tear test, and environmental conditions were measured in a 5 visit study. RESULTS Twenty-one symptomatic and 21 asymptomatic soft-contact-lens wearers completed the study. A thicker lipid layer was associated with slower evaporation flux (p < 0.001); higher evaporation flux was associated with faster tear breakup irrespective of lens wear (p = 0.006). Higher evaporation flux was also associated with faster ocular-surface-temperature decline rate (p < 0.001). Symptomatic lens wearers exhibited higher evaporation flux than did asymptomatic lens wearers, however, the results did not reach statistical significance (p = 0.053). Evaporation flux with lens wear was higher than without lens wear but was also not statistically significant (p = 0.110). CONCLUSIONS The repeatability of the Berkeley flow evaporimeter, associations between tear characteristics and evaporation flux, sample-size estimates, and near statistical significance in tear-evaporation flux between symptomatic and asymptomatic lens wearers all suggest that with sufficient sample sizes, the flow evaporimeter is a viable research tool to understand soft-contact-lens wear comfort.
Collapse
Affiliation(s)
- Young Hyun Kim
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA 94720, United States; Clinical Research Center, Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA 94720, United States; Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States
| | - Andrew D Graham
- Clinical Research Center, Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA 94720, United States
| | - Wing Li
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA 94720, United States; Clinical Research Center, Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA 94720, United States
| | - Thomas J Dursch
- Clinical Research Center, Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA 94720, United States; Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States
| | - Cheng-Chun Peng
- Clinical Research Center, Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA 94720, United States; Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States; CooperVision Inc., Pleasanton, CA 94588, United States
| | - Clayton J Radke
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA 94720, United States; Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States
| | - Meng C Lin
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA 94720, United States; Clinical Research Center, Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
7
|
Azieva G, Makrynioti D, Ablordeppey RK, Lin C, Benavente-Perez A. Development of a novel protocol to evaluate contact-lens related ocular surface health on marmosets (Callithrix jacchus). Exp Eye Res 2023; 231:109472. [PMID: 37137437 DOI: 10.1016/j.exer.2023.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/28/2023] [Accepted: 04/08/2023] [Indexed: 05/05/2023]
Abstract
Contact lens wear affects the ocular surface and can cause contact lens-induced dry eye (CLIDE). The purpose of this study was bifold: (1) to develop a novel protocol to assess the ocular surface in a non-human primate (NHP) model, the common marmoset (Callithrix jacchus), and (2) to characterize central corneal thickness (CCT), tear osmolarity, blink rate and tear meniscus height (TMH) longitudinally, in untreated marmosets (controls) compared to animals treated with contact lenses (CL). Longitudinal changes in CCT (N = 10 control; N = 10 treated with contact lenses, CL-treated), osmolarity (N = 4 control; N = 6 CL-treated), blink rate (N = 8 control; N = 10 CL-treated) and TMH (N = 8 control; N = 6 CL-treated) were assessed using high frequency A-scan ultrasound, the I-PEN Vet Tear Osmolarity System, a video recording system (745 frames/minute) and Image J respectively, from 70 days to 224 days (5 months) at approx. 9am, and again after 9hrs of CL wear (methafilcon A, 55% water content; Capricornia, Australia) after every 4 weeks of contact lens wear for a total of 22 weeks of treatment. Repeated measures ANOVA was used to compare eyes over time and student t-test was used to compare treated to control eyes at each time point. At baseline, untreated marmosets had a CCT (mean ± SD) of 0.31 ± 0.01 mm, tear osmolarity (mean ± SD) 311.67 ± 11.48 mOsms/L, blink rate (mean ± SD) 1.83 ± 1.79 blinks per minute (bpm) and TMH (mean ± SD) 0.07 ± 0.02 arbitrary units (au), all of which remained stable over 5 months, except blink rate that increased to 5.32 ± 1.58 bpm (p < 0.01) after 5 months. In CL-treated marmosets, however, CCT progressively increased with CL wear (baseline: 0.30 ± 0.01 mm; 5 months: 0.31 ± 0.02 mm, p < 0.05), while osmolarity decreased after 2 and 3 months of CL wear (baseline: 316.11 ± 13.63; 2 months: 302.63 ± 11.27, p < 0.05; 3 months: 302.92 ± 14.58, p < 0.05). The decrease in osmolarity occurred in parallel to an increase in blink rate (baseline: 0.98 ± 1.18 bpm; 2 months: 3.46 ± 3.04 bpm, p < 0.05; 3 months: 3.73 ± 1.50 bpm, p < 0.001). TMH decreased during the third month of CL wear (baseline: 0.06 ± 0.00 au; 3 months: 0.05 ± 0.01 au, p < 0.05), and increased after 4 months (0.08 ± 0.01 au, p < 0.05). As TMH decreased, tear osmolarity increased in both control (R = -0.66, p < 0.05) and CL-treated marmosets (R = -0.64, p < 0.05). The results suggest that marmosets treated with CL for 5 months experienced an increase in blink rate, CCT and TMH, along with a decrease in osmolarity within the first few months of CL treatment that differed from the unaffected stable ocular surface findings observed untreated animals. We hypothesize that CL wear in marmosets might induce mild corneal edema, an increased blink rate and TMH, in turn delaying the development of hyperosmolarity. These findings confirm that the marmoset is a good novel animal model for ocular surface research for the assessment of novel contact lens materials aimed to alleviate CLIDE.
Collapse
Affiliation(s)
| | | | | | - Carol Lin
- SUNY College of Optometry, New York, USA
| | | |
Collapse
|
8
|
Lin M, Sun X, Ye S, Chen Y, Gao J, Yuan F, Lin N, Lawson T, Liu Y, Deng R. A new antioxidant made from a pterostilbene functionalized graphene nanocomposite as an efficient treatment for dry eye disease. Front Chem 2022; 10:942578. [PMID: 36092674 PMCID: PMC9449147 DOI: 10.3389/fchem.2022.942578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Dry eye disease is a common condition that affects the eyes. It is caused by problems with the tear film and the tear dynamics. Dry eye can be caused by an increase in the amount of reactive oxygen species (ROS) in the corneal epithelium. The treatment for dry eye typically focuses on relieving the uncomfortable symptoms by using eye drops such as artificial tears, antibiotics, and by using anti-inflammatory/immunosuppressive agents such as cyclosporine, and lifitegrast. However, the recovery of patients with dry eye can take several years particularly if the symptoms are severe. This is because the present treatment approaches for dry eye are not based on its cause, e.g., the oxidative stress arising from the rapid increase in ROS. This work describes a new type of antioxidant made from pterostilbene (PS) and carboxyl-chitosan modified graphene (CG). The use of a hydrophilic two-dimensional CG nanosheet to improve the properties of PS is reported. Superior enhanced properties including better cellular permeability, long sustained release period (over 30 h), and antioxidant properties, were realized by using PS-CG. A hyperosmotic (HS) damaged human corneal epithelial cell (HCEC) model was used for antioxidant tests. This model has an intracellular ROS level 4 times more than that of a control group. The ROS content was declined efficiently to the same amount as normal cells in the PS-CG treated HS group. There was a significant decline in the content of lactate dehydrogenase (LDH) and the apoptosis rate of HCEC in the PS-CG treated HS group when compared to that seen in the HS model. Real-time polymerase chain reaction (PCR) and western blots (WB) were used to understand the antioxidant mechanism of PS-CG. The results showed that the antioxidant was working by activating the Keap1-Nrf2-ARE signalling pathway. In vivo testing testing using a dry eye mouse model suggested that the PS-CG acted as an efficient antioxidant. More tear production and healthier corneal and conjunctival epithelial cells were achieved when PC-CG was applied to this model. The use of PS-CG could be a new strategy for treating dry eye and other ocular diseases caused by ROS.
Collapse
Affiliation(s)
- Mimi Lin
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xueqin Sun
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sihao Ye
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Youyi Chen
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Gao
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng Yuan
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Na Lin
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tom Lawson
- School of Mathematical and Physical Sciences, ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW, Australia
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Yong Liu, ; Ruzhi Deng,
| | - Ruzhi Deng
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Yong Liu, ; Ruzhi Deng,
| |
Collapse
|
9
|
Clinical Report: Midday Removal and Reinsertion of Soft Contact Lens Cannot Prevent Post-lens Tear-film Hyperosmolarity. Optom Vis Sci 2022; 99:652-654. [PMID: 35849056 DOI: 10.1097/opx.0000000000001923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE Our analysis shows that post-lens tear-film hyperosmolarity is not preventable with midday removal and reinsertion of soft contact lenses. However, low lens-salt diffusivity can prevent the post-lens tear film from becoming hyperosmotic. Lens-salt diffusivity should be lowered to minimize post-lens tear-film osmolarity while also avoiding lens adhesion. PURPOSE Soft contact lenses with high lens-salt diffusivity result in hyperosmotic post-lens tear films (PoLTF). If the time it takes for PoLTF osmolarity to reach periodic steady state is multiple hours, simple midday lens removal and reinsertion can prevent the PoLTF from becoming hyperosmotic. We investigate whether midday removal and reinsertion of a soft contact lens can prevent the PoLTF from becoming hyperosmotic. METHODS Time to periodic steady state for PoLTF osmolarity upon soft-contact-lens wear is determined with a previously developed transient tear-dynamics continuum model. Interblink period, lens-salt diffusivity, and lens thickness were varied to assess their effects on time to periodic steady state for PoLTF osmolarity. Time to periodic steady states were assessed for both normal and dry eyes. RESULTS Within the physically realistic ranges of lens-salt diffusivity, lens thickness, and interblink period, PoLTF osmolarity reaches the periodic steady state well within the first hour of lens wear for both normal and dry eyes. Time to periodic steady state for PoLTF osmolarity is predominately dictated by the salt transport across the contact lens between the PoLTF and the pre-lens tear film and water transport from the ocular surface to the PoLTF. CONCLUSIONS Since the time to periodic steady state is less than one hour for physically realistic ranges of lens-salt diffusivity, interblink period, and lens thickness, midday lens removal and reinsertion cannot prevent PoLTF hyperosmolarity. Instead, focus should be on using soft contact lenses with low salt diffusivity to prevent PoLTF hyperosmolarity.
Collapse
|
10
|
Kim YH, Lin MC, Peng CC, Radke CJ. Prevention of localized corneal hyperosmolarity spikes by soft-contact-lens wear. Cont Lens Anterior Eye 2022; 45:101722. [PMID: 35718682 DOI: 10.1016/j.clae.2022.101722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE To determine whether localized hyperosmotic spikes on the pre-lens tear film (PrLTF) due to tear break up results in hyperosmotic spikes on the ocular surface during soft-contact-lens (SCL) wear and whether wear of SCLs can protect the cornea against PrLTF osmotic spikes. METHODS Two-dimensional transient diffusion of salt was incorporated into a computationally designed SCL, post-lens tear film (PoLTF), and ocular surface and solved numerically. Time-dependent localized hyperosmolarity spikes were introduced at the anterior surface of the SCL corresponding to those generated in the PrLTF. Salt spikes were followed in time until spikes penetrate through the lens into the PoLTF. Lens-salt diffusivities (Ds) were varied to assess their importance on salt migration from the PrLTF to the ocular surface. SCL and PoLTF initial conditions and the lens anterior-surface boundary condition were varied depending on the value of Ds and on dry-eye symptomatology. Determined corneal surface osmolarities were translated into clinical pain scores. RESULTS For Ds above about 10-7cm2/s, it takes around 5-10 s for the PrLTF hyperosmotic break-up spikes to diffuse across the SCL and reach the corneal surface. Even if localized hyperosmotic spikes penetrate to the ocular surface, salt concentrations there are much lower than those in the progenitor PrLTF spikes. For Ds less than 10-7cm2/s, the SCL protects the cornea from hyperosmotic spikes for both normal and dry eyes. When localized corneal hyperosmolarity is converted into transient pain scores, pain thresholds are significantly lower than those for no-lens wear. CONCLUSIONS A cornea can be protected from localized PrLTF hyperosmolarity spikes with SCL wear. With regular blinking (e.g., less than 10 s), SCL wear shields the cornea from significant hyperosmotic pain. Decreasing Ds increases that protection. Low-Ds soft contact lenses can protect against hyperosmotic spikes and discomfort even during infrequent blinking (e.g., > 10 s).
Collapse
Affiliation(s)
- Young Hyun Kim
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA 94720, United States; Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States; Clinical Research Center, University of California, Berkeley, CA 94720, United States
| | - Meng C Lin
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA 94720, United States; Clinical Research Center, University of California, Berkeley, CA 94720, United States
| | | | - Clayton J Radke
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA 94720, United States; Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
11
|
Rutschilling R, Fogt JS. Wear Experience of a Water Surface Daily Disposable Contact Lens in Existing Silicone Hydrogel Planned Replacement Lens Wearers. CLINICAL OPTOMETRY 2022; 14:27-34. [PMID: 35281321 PMCID: PMC8904437 DOI: 10.2147/opto.s353666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/10/2022] [Indexed: 05/16/2023]
Abstract
PURPOSE The health benefits of silicone hydrogel lens materials and a daily replacement modality have been demonstrated in previous studies; however, existing planned replacement lens wearers may resist changing to a new lens replacement schedule. The purpose of this study is to evaluate the wear experience of satisfied planned replacement silicone hydrogel wearers when refit into a silicone hydrogel daily disposable lens. PATIENTS AND METHODS In this open-label, non-comparison study, satisfied wearers of two week planned replacement contact lenses were evaluated for inclusion criteria and refit with optimized prescriptions in their habitual lenses. At a follow-up visit one week later, participants were refit with the study daily disposable lenses and completed visual analog scale (VAS) surveys of initial quality of vision, comfort, and satisfaction. Participants returned for a final visit after two weeks of wearing the study daily disposable lenses. At the final visit, VAS surveys for both overall and end of day (EOD) vision, comfort, and dryness were completed. Overall median and interquartile range (IQR) were assessed for all surveys in the study. RESULTS Thirty individuals completed the study (29.1 ± 7.8 years old; 19 female). Median (IQR) results for the initial impression VAS surveys were 92.50(11.75) for quality of vision, 92.50(18.00) for comfort, and 93.00(18.00) for satisfaction. Final VAS survey results revealed median scores of 87.50(25.00) for EOD quality of vision and 82.50(51.25) for EOD comfort. The median overall quality of vision was 91.00(17.00) and overall comfort was 93.00(28.50). Median (IQR) overall dryness was 28.50(49.00) and median EOD dryness was 30.50(64.25). CONCLUSION The findings of this study suggest that providers can successfully refit satisfied wearers of early generation silicone hydrogel planned replacement lenses into a new generation silicone hydrogel daily disposable lens while maintaining satisfaction.
Collapse
Affiliation(s)
| | - Jennifer Swingle Fogt
- College of Optometry, The Ohio State University, Columbus, OH, USA
- Correspondence: Jennifer Swingle Fogt, College of Optometry, The Ohio State University, 338 W. 10th Ave, Columbus, OH, 43210, USA, Tel +1 614 292 0882, Email
| |
Collapse
|