1
|
Dragoni S, Moccia F, Bootman MD. The Roles of Transient Receptor Potential (TRP) Channels Underlying Aberrant Calcium Signaling in Blood-Retinal Barrier Dysfunction. Cold Spring Harb Perspect Biol 2025; 17:a041763. [PMID: 39586624 PMCID: PMC11864113 DOI: 10.1101/cshperspect.a041763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The inner blood-retinal barrier (iBRB) protects the retinal vasculature from the peripheral circulation. Endothelial cells (ECs) are the core component of the iBRB; their close apposition and linkage via tight junctions limit the passage of fluids, proteins, and cells from the bloodstream to the parenchyma. Dysfunction of the iBRB is a hallmark of many retinal disorders. Vascular endothelial growth factor (VEGF) has been identified as the primary driver leading to a dysfunctional iBRB, thereby becoming the main target for therapy. However, a complete understanding of the molecular mechanisms underlying iBRB dysfunction is elusive and alternative therapeutic targets remain unexplored. Calcium (Ca2+) is a universal intracellular messenger whose homeostasis and dynamics are dysregulated in many pathological disorders. Among the extensive components of the cellular Ca2+-signaling toolkit, cation-selective transient receptor potential (TRP) channels are broadly involved in cell physiology and disease and, therefore, are widely studied as possible targets for therapy. Albeit that TRP channels have been discovered in the photoreceptors of Drosophila and have been studied in the neuroretina, their presence and function in the iBRB have only recently emerged. Within this article, we discuss the structure and functions of the iBRB with a particular focus on Ca2+ signaling in retinal ECs and highlight the potential of TRP channels as new targets for retinal diseases.
Collapse
Affiliation(s)
- Silvia Dragoni
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Martin D Bootman
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
2
|
Gu Y, Sheng F, Gao M, Zhang L, Hao S, Chen S, Chen R, Xu Y, Wu D, Han Y, Chen L, Liu Y, Lu B, Zhao W, Lou X, Chen Z, Li P, Wang X, Yao K, Fu Q. Acute and continuous exposure of airborne fine particulate matter (PM 2.5): diverse outer blood-retinal barrier damages and disease susceptibilities. Part Fibre Toxicol 2023; 20:50. [PMID: 38110941 PMCID: PMC10726629 DOI: 10.1186/s12989-023-00558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND The association between air pollution and retinal diseases such as age-related macular degeneration (AMD) has been demonstrated, but the pathogenic correlation is unknown. Damage to the outer blood-retinal barrier (oBRB), which consists of the retinal pigment epithelium (RPE) and choriocapillaris, is crucial in the development of fundus diseases. OBJECTIVES To describe the effects of airborne fine particulate matter (PM2.5) on the oBRB and disease susceptibilities. METHODS A PM2.5-exposed mice model was established through the administration of eye drops containing PM2.5. Optical coherence tomography angiography, transmission electron microscope, RPE immunofluorescence staining and Western blotting were applied to study the oBRB changes. A co-culture model of ARPE-19 cells with stretching vascular endothelial cells was established to identify the role of choroidal vasodilatation in PM2.5-associated RPE damage. RESULTS Acute exposure to PM2.5 resulted in choroidal vasodilatation, RPE tight junctions impairment, and ultimately an increased risk of retinal edema in mice. These manifestations are very similar to the pachychoroid disease represented by central serous chorioretinopathy (CSC). After continuous PM2.5 exposure, the damage to the RPE was gradually repaired, but AMD-related early retinal degenerative changes appeared under continuous choroidal inflammation. CONCLUSION This study reveals oBRB pathological changes under different exposure durations, providing a valuable reference for the prevention of PM2.5-related fundus diseases and public health policy formulation.
Collapse
Grants
- 82271063, 81670833, 81870641, 8207939, 81300641 National Natural Science Foundation of China
- 82271063, 81670833, 81870641, 8207939, 81300641 National Natural Science Foundation of China
- 2019C03091, 2020C03035 Key Research and Development Program of Zhejiang Province
- 2019C03091, 2020C03035 Key Research and Development Program of Zhejiang Province
- 2019QNA7026 Fundamental Research Funds for the Central Universities
Collapse
Affiliation(s)
- Yuzhou Gu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Feiyin Sheng
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Mengqin Gao
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, China
| | - Li Zhang
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Shengjie Hao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Shuying Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Rongrong Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Yili Xu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Di Wu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Yu Han
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Lu Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Ye Liu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Bing Lu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Wei Zhao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Xiaoming Lou
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang Province, China
| | - Zhijian Chen
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang Province, China
| | - Peng Li
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, China.
| | - Xiaofeng Wang
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang Province, China.
| | - Ke Yao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China.
| | - Qiuli Fu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|