1
|
Hein ZM, Che Mohd Nassir CMN, Che Ramli MD, Jaffer U, Mehat MZ, Mustapha M, Abdul Hamid H. Cerebral small vessel disease: The impact of glymphopathy and sleep disorders. J Cereb Blood Flow Metab 2025:271678X251333933. [PMID: 40322968 PMCID: PMC12052786 DOI: 10.1177/0271678x251333933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025]
Abstract
The glymphatic system, a vital brain perivascular network for waste clearance, hinges on the functionality of the aquaporin 4 (AQP4) water channel. Alarmingly, AQP4 single nucleotide polymorphisms (SNPs) are linked to impaired glymphatic clearance, or glymphopathy, which contributes to sleep disturbances and various age-related neurodegenerative diseases. Despite the critical role of glymphopathy and sleep disturbances in cerebral small vessel disease (CSVD) - a silent precursor to age-related neurodegenerative disorders - their interplay remains underexplored. CSVD is a major cause of stroke and dementia, yet its pathogenesis is not fully understood. Emerging evidence implicates glymphopathy and sleep disorders as pivotal factors in age-related CSVD, exacerbating the condition by hindering waste removal and compromising blood-brain barrier (BBB) integrity. Advanced imaging techniques promise to enhance diagnosis and monitoring, while lifestyle modifications and personalised medicine present promising treatment avenues. This narrative review underscores the need for a multidisciplinary approach to understanding glymphopathy and sleep disorders in CSVD. By exploring their roles, emphasising the necessity for longitudinal studies, and discussing potential therapeutic interventions, this paper aims to pave the way for new research and therapeutic directions in CSVD management.
Collapse
Affiliation(s)
- Zaw Myo Hein
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | | | | | - Usman Jaffer
- Kulliyyah of Islamic Revealed Knowledge and Human Sciences, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA BRAIN), Universiti Putra Malaysia, Selangor, Malaysia
| | - Muzaimi Mustapha
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA BRAIN), Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
2
|
Zhang Y, Savvidou M, Liaudanskaya V, Ramanathan V, Bui T, Matthew L, Sze A, Ugwu UO, Yuhang F, Matthew DE, Chen X, Nasritdinova S, Dey A, Miller EL, Kaplan DL, Georgakoudi I. Multi-modal, Label-free, Optical Mapping of Cellular Metabolic Function and Oxidative Stress in 3D Engineered Brain Tissue Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607216. [PMID: 39211249 PMCID: PMC11361058 DOI: 10.1101/2024.08.08.607216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Brain metabolism is essential for the function of organisms. While established imaging methods provide valuable insights into brain metabolic function, they lack the resolution to capture important metabolic interactions and heterogeneity at the cellular level. Label-free, two-photon excited fluorescence imaging addresses this issue by enabling dynamic metabolic assessments at the single-cell level without manipulations. In this study, we demonstrate the impact of spectral imaging on the development of rigorous intensity and lifetime label-free imaging protocols to assess dynamically over time metabolic function in 3D engineered brain tissue models comprising human induced neural stem cells, astrocytes, and microglia. Specifically, we rely on multi-wavelength spectral imaging to identify the excitation/emission profiles of key cellular fluorophores within human brain cells, including NAD(P)H, LipDH, FAD, and lipofuscin. These enable development of methods to mitigate lipofuscin's overlap with NAD(P)H and flavin autofluorescence to extract reliable optical metabolic function metrics from images acquired at two excitation wavelengths over two emission bands. We present fluorescence intensity and lifetime metrics reporting on redox state, mitochondrial fragmentation, and NAD(P)H binding status in neuronal monoculture and triculture systems, to highlight the functional impact of metabolic interactions between different cell types. Our findings reveal significant metabolic differences between neurons and glial cells, shedding light on metabolic pathway utilization, including the glutathione pathway, OXPHOS, glycolysis, and fatty acid oxidation. Collectively, our studies establish a label-free, non-destructive approach to assess the metabolic function and interactions among different brain cell types relying on endogenous fluorescence and illustrate the complementary nature of information that is gained by combining intensity and lifetime-based images. Such methods can improve understanding of physiological brain function and dysfunction that occurs at the onset of cancers, traumatic injuries and neurodegenerative diseases.
Collapse
|
3
|
Komar K. Two-photon vision - Seeing colors in infrared. Vision Res 2024; 220:108404. [PMID: 38608547 DOI: 10.1016/j.visres.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
This review discusses the current state of knowledge regarding the phenomenon called two-photon vision. It involves the visual perception of pulsed infrared beams in the range of 850-1200 nm as having colors corresponding to one-half of the IR wavelengths. It is caused by two-photon absorption (TPA), which occurs when the visual photopigment interacts simultaneously with two infrared photons. The physical mechanism of TPA is described, and implications about the efficiency of the process are considered. The spectral range of two-photon vision is defined, along with a detailed discussion of the known differences in color perception between normal and two-photon vision. The quadratic dependence of the luminance of two-photon stimuli on the power of the stimulating beam is also explained. Examples of recording two-photon vision in the retinas of mice and monkeys are provided from the literature. Finally, applications of two-photon vision are discussed, particularly two-photon microperimetry, which has been under development for several years; and the potential advantages of two-photon retinal displays are explained.
Collapse
Affiliation(s)
- Katarzyna Komar
- International Centre for Translational Eye Research, Skierniewicka 10a, 01-230 Warsaw, Poland; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224 Warsaw, Poland; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
4
|
Kaushik V, Dąbrowski M, Gessa L, Kumar N, Fernandes H. Two-photon excitation fluorescence in ophthalmology: safety and improved imaging for functional diagnostics. Front Med (Lausanne) 2024; 10:1293640. [PMID: 38235268 PMCID: PMC10791900 DOI: 10.3389/fmed.2023.1293640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Two-photon excitation fluorescence (TPEF) is emerging as a powerful imaging technique with superior penetration power in scattering media, allowing for functional imaging of biological tissues at a subcellular level. TPEF is commonly used in cancer diagnostics, as it enables the direct observation of metabolism within living cells. The technique is now widely used in various medical fields, including ophthalmology. The eye is a complex and delicate organ with multiple layers of different cell types and tissues. Although this structure is ideal for visual perception, it generates aberrations in TPEF eye imaging. However, adaptive optics can now compensate for these aberrations, allowing for improved imaging of the eyes of animal models for human diseases. The eye is naturally built to filter out harmful wavelengths, but these wavelengths can be mimicked and thereby utilized in diagnostics via two-photon (2Ph) excitation. Recent advances in laser-source manufacturing have made it possible to minimize the exposure of in vivo measurements within safety, while achieving sufficient signals to detect for functional images, making TPEF a viable option for human application. This review explores recent advances in wavefront-distortion correction in animal models and the safety of use of TPEF on human subjects, both of which make TPEF a potentially powerful tool for ophthalmological diagnostics.
Collapse
Affiliation(s)
- Vineeta Kaushik
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dąbrowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Luca Gessa
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Nelam Kumar
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Humberto Fernandes
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
6
|
Hackley SA, Johnson LN. The photic blink reflex as an index of photophobia. Biol Psychol 2023; 184:108695. [PMID: 37757999 DOI: 10.1016/j.biopsycho.2023.108695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Two recent studies of eye closure triggered by intense luminance increase suggest that this behavior reflects the melanopsin-based retinal activity known to underlie photophobia, the pathological aversion to light (Kardon, 2012; Kaiser et al., 2021). Early studies of the photic blink reflex (PBR) are reviewed to help guide future research on this possible objective index of photophobia. Electromyographic recordings of the lid-closure muscle, orbicularis oculi, reveal distinct bursts with typical onset latencies of 50 and 80 ms, R50 and R80, respectively. The latter component appears to be especially sensitive to visual signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) and to prior trigeminal nociceptive stimuli. The authors argue that the R80's function, in addition to protecting the eyeballs from physical contact, is to shape the upper and lower eyelids into a narrow slit to restrict incoming light. This serves to prevent retinal bleaching or injury, while allowing continued visual function.
Collapse
Affiliation(s)
- Steven A Hackley
- Department of Psychological Sciences, University of Missouri, Columbia, USA.
| | - Lenworth N Johnson
- Department of Ophthalmology, Warren Alpert Medical School of Brown University, USA
| |
Collapse
|
7
|
Tworak A, Kolesnikov AV, Hong JD, Choi EH, Luu JC, Palczewska G, Dong Z, Lewandowski D, Brooks MJ, Campello L, Swaroop A, Kiser PD, Kefalov VJ, Palczewski K. Rapid RGR-dependent visual pigment recycling is mediated by the RPE and specialized Müller glia. Cell Rep 2023; 42:112982. [PMID: 37585292 PMCID: PMC10530494 DOI: 10.1016/j.celrep.2023.112982] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023] Open
Abstract
In daylight, demand for visual chromophore (11-cis-retinal) exceeds supply by the classical visual cycle. This shortfall is compensated, in part, by the retinal G-protein-coupled receptor (RGR) photoisomerase, which is expressed in both the retinal pigment epithelium (RPE) and in Müller cells. The relative contributions of these two cellular pools of RGR to the maintenance of photoreceptor light responses are not known. Here, we use a cell-specific gene reactivation approach to elucidate the kinetics of RGR-mediated recovery of photoreceptor responses following light exposure. Electroretinographic measurements in mice with RGR expression limited to either cell type reveal that the RPE and a specialized subset of Müller glia contribute both to scotopic and photopic function. We demonstrate that 11-cis-retinal formed through photoisomerization is rapidly hydrolyzed, consistent with its role in a rapid visual pigment regeneration process. Our study shows that RGR provides a pan-retinal sink for all-trans-retinal released under sustained light conditions and supports rapid chromophore regeneration through the photic visual cycle.
Collapse
Affiliation(s)
- Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA.
| | - Alexander V Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - Elliot H Choi
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - Jennings C Luu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Grazyna Palczewska
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Polgenix, Inc., Department of Medical Devices, Cleveland, OH 44106, USA
| | - Zhiqian Dong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - Dominik Lewandowski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Department of Clinical Pharmacy Practice, University of California, Irvine, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
8
|
Choi EH, Suh S, Sears AE, Hołubowicz R, Kedhar SR, Browne AW, Palczewski K. Genome editing in the treatment of ocular diseases. Exp Mol Med 2023; 55:1678-1690. [PMID: 37524870 PMCID: PMC10474087 DOI: 10.1038/s12276-023-01057-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Genome-editing technologies have ushered in a new era in gene therapy, providing novel therapeutic strategies for a wide range of diseases, including both genetic and nongenetic ocular diseases. These technologies offer new hope for patients suffering from previously untreatable conditions. The unique anatomical and physiological features of the eye, including its immune-privileged status, size, and compartmentalized structure, provide an optimal environment for the application of these cutting-edge technologies. Moreover, the development of various delivery methods has facilitated the efficient and targeted administration of genome engineering tools designed to correct specific ocular tissues. Additionally, advancements in noninvasive ocular imaging techniques and electroretinography have enabled real-time monitoring of therapeutic efficacy and safety. Herein, we discuss the discovery and development of genome-editing technologies, their application to ocular diseases from the anterior segment to the posterior segment, current limitations encountered in translating these technologies into clinical practice, and ongoing research endeavors aimed at overcoming these challenges.
Collapse
Affiliation(s)
- Elliot H Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Avery E Sears
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Rafał Hołubowicz
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Sanjay R Kedhar
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Andrew W Browne
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA.
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
9
|
Ding Z, Fan X, Zhang Y, Yao M, Wang G, Dong Y, Liu J, Song W. The glymphatic system: a new perspective on brain diseases. Front Aging Neurosci 2023; 15:1179988. [PMID: 37396658 PMCID: PMC10308198 DOI: 10.3389/fnagi.2023.1179988] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
The glymphatic system is a brain-wide perivascular pathway driven by aquaporin-4 on the endfeet of astrocytes, which can deliver nutrients and active substances to the brain parenchyma through periarterial cerebrospinal fluid (CSF) influx pathway and remove metabolic wastes through perivenous clearance routes. This paper summarizes the composition, overall fluid flow, solute transport, related diseases, affecting factors, and preclinical research methods of the glymphatic system. In doing so, we aim to provide direction and reference for more relevant researchers in the future.
Collapse
|