1
|
Zhou S, Watcharaanantapong P, Yang X, Thornton T, Gan H, Tabler T, Prado M, Zhao Y. Evaluating broiler welfare and behavior as affected by growth rate and stocking density. Poult Sci 2024; 103:103459. [PMID: 38308899 PMCID: PMC10847911 DOI: 10.1016/j.psj.2024.103459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024] Open
Abstract
This study evaluated the welfare and behaviors of Cobb 700 broilers as affected by growth rate (GR) and stocking density (SD). Slower-growth (weight gain < 50 g/d) and medium-growth (weight gain = 50-60 g/d) broilers were produced by providing 57.1% and 78.6% of the feed intake listed in the Cobb 700 production manual for standard (fed ad libitum) broilers (weight gain > 60 g/d). Broilers at all 3 GRs were reared at 2 SDs of 30 and 40 kg/m2. Broiler welfare indicators, including gait score, tibia strength, feather coverage, and footpad condition were evaluated when birds reached 1, 2, and 3 kg of body weight. The activity index was determined by overhead cameras and image processing, and the time spent at feeders was recorded using the radio-frequency identification (RFID) systems. The results show that it took 45 d for standard, 52 d for medium-growth, and 62 d for slower-growth broilers to reach a 3 kg market body weight. Feed conversion ratios (FCR, kg/kg) were 1.57 for standard, 1.67 for medium-growth, and 1.80 for slower-growth broilers. Growth rate and SD had an interaction effect on feather cleanliness (P = 0.03), and belly feather coverage (P = 0.02). Slower-growth broilers were more active and had better feather coverage and gait scores than medium-growth and standard broilers (all P < 0.01) but may feel hungry and depressed, medium-growth broilers spent the most time at the feeder among the 3 growth groups (P = 0.02), and standard broilers showed the best production performance. Broilers at 30 kg/m2 showed better bone strength (P = 0.04), and footpad condition (P < 0.01) compared to those at 40 kg/m2. In conclusion, reducing GR and SD may slightly improve broiler leg health at the high expense of compromised production performance and prolonged production cycles.
Collapse
Affiliation(s)
- Shengyu Zhou
- Animal Science, The University of Tennessee, Knoxville, TN, USA
| | | | - Xiao Yang
- Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Tanner Thornton
- Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Hao Gan
- Biosystems Engineering & Soils Science, The University of Tennessee, Knoxville, TN, USA
| | - Tom Tabler
- Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Maria Prado
- Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Yang Zhao
- Animal Science, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
2
|
Image Classification and Automated Machine Learning to Classify Lung Pathologies in Deceased Feedlot Cattle. Vet Sci 2023; 10:vetsci10020113. [PMID: 36851417 PMCID: PMC9960640 DOI: 10.3390/vetsci10020113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Bovine respiratory disease (BRD) and acute interstitial pneumonia (AIP) are the main reported respiratory syndromes (RSs) causing significant morbidity and mortality in feedlot cattle. Recently, bronchopneumonia with an interstitial pattern (BIP) was described as a concerning emerging feedlot lung disease. Necropsies are imperative to assist lung disease diagnosis and pinpoint feedlot management sectors that require improvement. However, necropsies can be logistically challenging due to location and veterinarians' time constraints. Technology advances allow image collection for veterinarians' asynchronous evaluation, thereby reducing challenges. This study's goal was to develop image classification models using machine learning to determine RS diagnostic accuracy in right lateral necropsied feedlot cattle lungs. Unaltered and cropped lung images were labeled using gross and histopathology diagnoses generating four datasets: unaltered lung images labeled with gross diagnoses, unaltered lung images labeled with histopathological diagnoses, cropped images labeled with gross diagnoses, and cropped images labeled with histopathological diagnoses. Datasets were exported to create image classification models, and a best trial was selected for each model based on accuracy. Gross diagnoses accuracies ranged from 39 to 41% for unaltered and cropped images. Labeling images with histopathology diagnoses did not improve average accuracies; 34-38% for unaltered and cropped images. Moderately high sensitivities were attained for BIP (60-100%) and BRD (20-69%) compared to AIP (0-23%). The models developed still require fine-tuning; however, they are the first step towards assisting veterinarians' lung diseases diagnostics in field necropsies.
Collapse
|
3
|
Are automated sensors a reliable tool to estimate behavioural activities in grazing beef cattle? Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Ali MA, Kravitz AV. Challenges in quantifying food intake in rodents. Brain Res 2019; 1693:188-191. [PMID: 29903621 DOI: 10.1016/j.brainres.2018.02.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/04/2018] [Accepted: 02/24/2018] [Indexed: 01/13/2023]
Abstract
Feeding is a critical behavior that animals depend on for survival, and pathological alterations in food intake underlie disorders such as obesity and anorexia nervosa. To understand these disorders and their development in animal models, researchers must quantify food intake. Although conceptually straightforward, it remains a challenge to obtain accurate records of food intake in rodents. Several approaches have been used to accomplish this, each with benefits and drawbacks. In this article, we survey the four most common methods for measuring food intake in rodents: manual weighing of food, automated weighing scales, pellet dispensers, and video-based analyses. We highlight each method's benefits and drawbacks for use in feeding research, focusing on accuracy, potential sources of errors, affordability, and practical concerns relating to their use. Finally, we discuss the outlook for feeding devices and unmet challenges for measuring food intake in laboratory rodents.
Collapse
Affiliation(s)
- Mohamed A Ali
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Alexxai V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA; National Institute on Drug Abuse, Baltimore, MD, USA.
| |
Collapse
|
5
|
Guardabassi L, Apley M, Olsen JE, Toutain PL, Weese S. Optimization of Antimicrobial Treatment to Minimize Resistance Selection. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0018-2017. [PMID: 29932044 PMCID: PMC11633575 DOI: 10.1128/microbiolspec.arba-0018-2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
Optimization of antimicrobial treatment is a cornerstone in the fight against antimicrobial resistance. Various national and international authorities and professional veterinary and farming associations have released generic guidelines on prudent antimicrobial use in animals. However, these generic guidelines need to be translated into a set of animal species- and disease-specific practice recommendations. This article focuses on prevention of antimicrobial resistance and its complex relationship with treatment efficacy, highlighting key situations where the current antimicrobial drug products, treatment recommendations, and practices may be insufficient to minimize antimicrobial selection. The authors address this topic using a multidisciplinary approach involving microbiology, pharmacology, clinical medicine, and animal husbandry. In the first part of the article, we define four key targets for implementing the concept of optimal antimicrobial treatment in veterinary practice: (i) reduction of overall antimicrobial consumption, (ii) improved use of diagnostic testing, (iii) prudent use of second-line, critically important antimicrobials, and (iv) optimization of dosage regimens. In the second part, we provided practice recommendations for achieving these four targets, with reference to specific conditions that account for most antimicrobial use in pigs (intestinal and respiratory disease), cattle (respiratory disease and mastitis), dogs and cats (skin, intestinal, genitourinary, and respiratory disease), and horses (upper respiratory disease, neonatal foal care, and surgical infections). Lastly, we present perspectives on the education and research needs for improving antimicrobial use in the future.
Collapse
Affiliation(s)
- Luca Guardabassi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Mike Apley
- Kansas State University College of Veterinary Medicine, Manhattan, Kansas, 66506
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | | | - Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
6
|
Johnson KK, Pendell DL. Market Impacts of Reducing the Prevalence of Bovine Respiratory Disease in United States Beef Cattle Feedlots. Front Vet Sci 2017; 4:189. [PMID: 29170739 PMCID: PMC5684707 DOI: 10.3389/fvets.2017.00189] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/20/2017] [Indexed: 12/02/2022] Open
Abstract
Bovine respiratory disease (BRD) is a common endemic disease among North American feedlot cattle. BRD can lead to significant economic losses for individual beef cattle feedlot producers through mortality and morbidity. With promising new management and technology research that could reduce BRD prevalence, this study evaluates the potential impacts of a reduction of BRD in the US beef cattle feedlot sector. Using a multi-market, multi-commodity partial equilibrium economic model of the US agricultural industry, we evaluate the market impacts of reduced BRD to producers from various livestock, meat, and feedstuffs industries. We find that as morbidity and mortality is reduced, beef cattle producers experience losses due to increased supplies (lower beef cattle prices) and increased demand for feedstuff (higher feedstuff prices). Beef cattle processors see gains as the price of beef cattle is lower, whereas feedstuff producers gain from higher feedstuff prices. Producers in the allied industries (pork, lamb, poultry, and eggs) see a small reduction in returns as consumers substitute with less expensive beef products. Consumers see gains in welfare as the increase in beef cattle supply results in lower beef prices. These lower beef prices more than offset the small increases in pork, lamb, poultry, and egg prices. Overall, the potential economic welfare change due to management and technologies that reduce BRD is a net gain for the US society as a whole.
Collapse
Affiliation(s)
- Kamina Keiko Johnson
- Animal and Plant Health Inspection Service, United States Department of Agriculture, Washington DC, CO, United States
| | | |
Collapse
|
7
|
Nasirahmadi A, Edwards SA, Sturm B. Implementation of machine vision for detecting behaviour of cattle and pigs. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.05.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Murray GM, O'Neill RG, More SJ, McElroy MC, Earley B, Cassidy JP. Evolving views on bovine respiratory disease: An appraisal of selected control measures – Part 2. Vet J 2016; 217:78-82. [DOI: 10.1016/j.tvjl.2016.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022]
|
9
|
White BJ, Amrine DE, Goehl DR. Determination of value of bovine respiratory disease control using a remote early disease identification system compared with conventional methods of metaphylaxis and visual observations. J Anim Sci 2016; 93:4115-22. [PMID: 26440191 DOI: 10.2527/jas.2015-9079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitigation of the deleterious effects of bovine respiratory disease (BRD) is an important issue in the cattle industry. Conventional management of calves at high risk for BRD often includes mass treatment with antimicrobials at arrival followed by visual observation for individual clinical cases. These methods have proven effective; however, control program efficacy is influenced by the accuracy of visual observation. A remote early disease identification (REDI) system has been described that monitors cattle behavior to identify potential BRD cases. The objective of this research was to compare health and performance outcomes using either traditional BRD control (visual observation and metaphylaxis) or REDI during a 60-d postarrival phase in high-risk beef calves. The randomized controlled clinical trial was performed in 8 replicates at 3 different facilities over a 19-mo period. In each replicate, a single load of calves was randomly allocated to receive either conventional management (CONV; total = 8) or REDI (total = 8) as the method for BRD control. Cattle were monitored with each diagnostic method for the first 30 d on feed and performance variables were collected until approximately 60 d after arrival. Statistical differences ( < 0.10) were not identified in common performance (ADG) or health (morbidity, first treatment success, and mortality risk) among the treatment groups. Calves in the REDI pens had a lower ( < 0.01) average number of days on feed at first treatment (9.1 ± 1.2 d) compared with CONV pens (15.8 ± 1.2 d). There were no statistical differences ( > 0.10) in risk of BRD treatment and REDI calves were not administered antimicrobials at arrival; therefore, REDI calves had a lower ( < 0.01) average number of doses of antimicrobials/calf (0.75 ± 0.1 doses) compared with CONV calves (1.67 ± 0.1 doses). In this trial, the REDI system was comparable to conventional management with the potential advantages of earlier BRD diagnosis and decreased use of antimicrobials. Further research should be performed to evaluate the longer-term impacts of the 2 systems.
Collapse
|
10
|
Theurer ME, White BJ, Renter DG. Optimizing Feedlot Diagnostic Testing Strategies Using Test Characteristics, Disease Prevalence, and Relative Costs of Misdiagnosis. Vet Clin North Am Food Anim Pract 2015. [DOI: 10.1016/j.cvfa.2015.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Wolfger B, Timsit E, White BJ, Orsel K. A Systematic Review of Bovine Respiratory Disease Diagnosis Focused on Diagnostic Confirmation, Early Detection, and Prediction of Unfavorable Outcomes in Feedlot Cattle. Vet Clin North Am Food Anim Pract 2015. [DOI: 10.1016/j.cvfa.2015.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|