1
|
Watanuki S, Bao A, Saitou E, Shoji K, Izawa M, Okami M, Matsumoto Y, Aida Y. BLV-CoCoMo Dual qPCR Assay Targeting LTR Region for Quantifying Bovine Leukemia Virus: Comparison with Multiplex Real-Time qPCR Assay Targeting pol Region. Pathogens 2024; 13:1111. [PMID: 39770370 PMCID: PMC11677995 DOI: 10.3390/pathogens13121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The proviral load (PVL) of the bovine leukemia virus (BLV) is a useful index for estimating disease progression and transmission risk. Real-time quantitative PCR techniques are widely used for PVL quantification. We previously developed a dual-target detection method, the "Liquid Dual-CoCoMo assay", that uses the coordination of common motif (CoCoMo) degenerate primers. This method can detect two genes simultaneously using a FAM-labeled minor groove binder (MGB) probe for the BLV long terminal repeat (LTR) region and a VIC-labeled MGB probe for the BoLA-DRA gene. In this study, we evaluated the diagnostic and analytical performance of the Dual-CoCoMo assay targeting the LTR region by comparing its performance against the commercially available Takara multiplex assay targeting the pol region. The diagnostic sensitivity and specificity of the Liquid Dual-CoCoMo assay based on the diagnostic results of the ELISA or original Single-CoCoMo qPCR were higher than those of the Takara multiplex assay. Furthermore, using a BLV molecular clone, the analytical sensitivity of our assay was higher than that of the Takara multiplex assay. Our results provide the first evidence that the diagnostic and analytical performances of the Liquid Dual-CoCoMo assay are better than those of commercially available multiplex assays that target the pol region.
Collapse
Affiliation(s)
- Sonoko Watanuki
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Aronggaowa Bao
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Etsuko Saitou
- Hyogo Prefectural Awaji Meat Inspection Center, 49-18 Shitoorinagata, Minamiawaji 656-0152, Japan
| | - Kazuyuki Shoji
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Masaki Izawa
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Mitsuaki Okami
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| |
Collapse
|
2
|
Joris T, Jouant T, Jacques JR, Gouverneur L, Saintmard X, Vilanova Mañá L, Jamakhani M, Reichert M, Willems L. Reduction of antisense transcription affects bovine leukemia virus replication and oncogenesis. PLoS Pathog 2024; 20:e1012659. [PMID: 39509441 PMCID: PMC11575825 DOI: 10.1371/journal.ppat.1012659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/19/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024] Open
Abstract
In sheep infected with bovine leukemia virus (BLV), transcription of structural, enzymatic, and accessory genes is silenced. However, the BLV provirus transcribes a series of non-coding RNAs that remain undetected by the host immune response. Specifically, three RNAs (AS1-L, AS1-S, and AS2) are consistently expressed from the antisense strand, originating from transcriptional initiation at the 3'-Long Terminal Repeat (LTR). To investigate the role of these non-coding RNAs in viral replication and pathogenesis, a reverse genetics approach was devised, capitalizing on a mechanistic disparity in transcription initiation between the 5' and 3' promoters. A two-nucleotide mutation (GG>TA) in the TFIIB-recognition element (BRE) impaired antisense transcription originating from the 3'-LTR. In the context of the provirus, this 2bp mutation significantly diminished the expression of antisense RNAs, while not notably affecting sense transcription. When inoculated to sheep, the mutated provirus was infectious but exhibited reduced replication levels, shedding light on the role of antisense transcription in vivo. In comparison to lymphoid organs in sheep infected with a wild-type (WT) provirus, the mutant demonstrated alterations in both the spatial distribution and rates of cell proliferation in the lymph nodes and the spleen. Analysis through RNA sequencing and RT-qPCR unveiled an upregulation of the Hmcn1/hemicentin-1 gene in B-lymphocytes from sheep infected with the mutated provirus. Further examination via confocal microscopy and immunohistochemistry revealed an increase in the amount of hemicentin-1 protein encoded by Hmcn1 in peripheral blood mononuclear cells (PBMCs) and lymphoid organs of sheep infected with the mutant. RNA interference targeting Hmcn1 expression impacted the migration of ovine kidney (OVK) cells in vitro. In contrast to the WT, the mutated provirus showed reduced oncogenicity when inoculated into sheep. Collectively, this study underscores the essential role of antisense transcription in BLV replication and pathogenicity. These findings may offer valuable insights into understanding the relevance of antisense transcription in the context of human T-cell leukemia virus (HTLV-1).
Collapse
Affiliation(s)
- Thomas Joris
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Thomas Jouant
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Jean-Rock Jacques
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Lorian Gouverneur
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Xavier Saintmard
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Lea Vilanova Mañá
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Majeed Jamakhani
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Michal Reichert
- Department of Pathological Anatomy, National Veterinary Research Institute, Puławy, Poland
| | - Luc Willems
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| |
Collapse
|
3
|
Borovikov S, Tursunov K, Adish Z, Tokhtarova L, Mukantayev K. Effects of combined cytotoxic T-lymphocyte antigen 4 and programed death 1 ligand-receptor blockade on interferon-gamma production in bovine leukemia virus-infected cattle. Vet World 2024; 17:1672-1679. [PMID: 39328455 PMCID: PMC11422625 DOI: 10.14202/vetworld.2024.1672-1679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/02/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim In chronic viral infections, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death ligand 1 (PD-L1) significantly suppress immune responses. The CTLA-4 receptor abundance in regulatory T cells showed a positive association with viral load and a negative association with interferon-gamma (IFN-γ) production in bovine leukemia virus (BLV)-infected cattle. Blocking this receptor boosted IFN-γ production, recovering immune response against this illness. In human cancer patients, not everyone responded positively to non-immunotherapy using CTLA-4 receptor antibodies. The present study analyzed the synergistic effects of CTLA-4 and PD-L1 receptor blockade on IFN-γ production in BLV+ cattle in vitro. Materials and Methods The genes for bovine CTLA-4 and PD-L1 were artificially produced. The amino acid sequences of the extracellular receptor domains were sourced from the National Center for Biotechnology Information PubMed database. The western blotting and liquid chromatography with tandem mass spectrometry (LC-MS/MS) techniques were employed for the characterization of recombinant CTLA-4 (rCTLA-4) and recombinant PD-L1 (rPD-L1) proteins. The immunoinhibitory effects of recombinant proteins in Staphylococcus enterotoxin B (SEB)-stimulated cattle peripheral blood mononuclear cells (PBMCs) were investigated. Enzyme-linked immunosorbent assay (ELISA) was used to analyze monoclonal antibodies against rCTLA-4 and rPD-L1. Antibodies generated from peripheral blood mononuclear cells of healthy and BLV-seropositive cows were employed to evaluate their blocking capabilities. Results The resulting recombinant proteins specifically reacted with commercial homogeneous monoclonal antibodies (mAbs) using ELISA and anti-His-tag mAbs using western blotting. Analysis of the proteins using LC-MS/MS revealed correspondence with the sequences of rCTLA-4 and rPD-L1 located in the Mascot database. rCTLA-4 and rPD-L1 proteins inhibited IFN-γ production in bovine PBMCs of activated SEB. When PBMCs from cows were cultured with activated SEB containing rCTLA-4 and rPD-L1, the mAbs increased IFN-γ production in PBMCs. The combined cultivation of mAbs and PBMCs from BLV+ cattle enhanced IFN-γ production in the cells. Conclusion These findings suggest that the combined blockade of bovine CTLA-4 and PD-L1 receptors can be used as a therapy for bovine leukemia. However, it was shown that a single PBMC sample from a BLV-positive donor did not amplify the synergistic effect. Therefore, it is necessary to perform further studies on a larger population and assessing a wider range of cytokines.
Collapse
Affiliation(s)
- Sergey Borovikov
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Astana, Kazakhstan
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Animal Husbandry Technology, S. Seifullin Kazakh Agrotechnical Research University, Astana, Kazakhstan
| | - Kanat Tursunov
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | - Zhansaya Adish
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Astana, Kazakhstan
- Department of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Laura Tokhtarova
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | - Kanatbek Mukantayev
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
4
|
Iwamoto J, Koreeda T, Iino M, Eitoku R, Shibata S. Estimation of the proviral load in Japanese Black cattle infected with bovine leukemia virus by statistical modeling. J Vet Med Sci 2024; 86:135-140. [PMID: 38123328 PMCID: PMC10898988 DOI: 10.1292/jvms.23-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Enzootic bovine leukosis (EBL) is B-cell lymphoma in cattle caused by bovine leukemia virus (BLV) infection. The incidence of EBL has been increasing since 1998 in Japan, resulting in significant economic losses for farms. The BLV genome integrates with the host genome as provirus, leading to sustainably infection. Although most of the BLV-infected cattle are aleukemic, some cattle cause persistent lymphocytosis (PL) and subsequently develop EBL. Recent reports suggest the association between the risk for the transmission of BLV and the developing EBL and the proviral load (PVL) in BLV-infected cattle, which cannot measure readily in the field. This study aims to build a statistical model for predicting PVL of BLV-infected asymptomatic or PL cattle based on data accessible in the field. Five negative binomial regression models with different linear predictors were built and compared for the predictability of PVL. Consequently, the model with two explanatory variables (age in months and logarithm of lymphocyte count) was selected as the best model. The model can be used in the field as a cost-beneficial supporting tool to estimate the risk of transmission of BLV and developing EBL in infected cattle.
Collapse
Affiliation(s)
- Jiro Iwamoto
- Kagoshima Prefectural Aira Livestock Hygiene Service Center, Kagoshima, Japan
| | - Terunori Koreeda
- Kagoshima Prefectural Hokusatsu Livestock Hygiene Service Center, Kagoshima, Japan
| | - Mei Iino
- Kagoshima Prefectural Soo Livestock Hygiene Service Center, Kagoshima, Japan
| | - Rikako Eitoku
- Kagoshima Prefectural Kagoshima Central Livestock Hygiene Service Center Oshima Branch Office, Kagoshima, Japan
| | - Shoichi Shibata
- Kagoshima Prefectural Aira Livestock Hygiene Service Center, Kagoshima, Japan
| |
Collapse
|
5
|
Hamada R, Metwally S, Matsuura R, Borjigin L, Lo CW, Ali AO, Mohamed AEA, Wada S, Aida Y. BoLA-DRB3 Polymorphism Associated with Bovine Leukemia Virus Infection and Proviral Load in Holstein Cattle in Egypt. Pathogens 2023; 12:1451. [PMID: 38133334 PMCID: PMC10746042 DOI: 10.3390/pathogens12121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, the most prevalent neoplastic disease of cattle worldwide. The immune response to BLV and disease susceptibility and resistance in cattle are strongly correlated with the bovine leukocyte antigen (BoLA)-DRB3 allelic polymorphism. BLV infection continues to spread in Egypt, in part because the relationships between BLV infection, proviral load in Egypt, and BoLA-DRB3 polymorphism are unknown. Here, we identified 18 previously reported alleles in 121 Holstein cows using a polymerase chain reaction sequence-based typing method. Furthermore, BoLA-DRB3 gene polymorphisms in these animals were investigated for their influence on viral infection. BoLA-DRB3*015:01 and BoLA-DRB3*010:01 were identified as susceptible and resistant alleles, respectively, for BLV infection in the tested Holsteins. In addition, BoLA-DRB3*012:01 was associated with low PVL in previous reports but high PVL in Holstein cattle in Egypt. This study is the first to demonstrate that the BoLA-DRB3 polymorphism confers resistance and susceptibility to PVL and infections of BLV in Holstein cattle in Egypt. Our results can be useful for the disease control and eradication of BLV through genetic selection.
Collapse
Affiliation(s)
- Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour City 22511, Egypt
| | - Samy Metwally
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour City 22511, Egypt
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
| | - Chieh-Wen Lo
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Alsagher O. Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City 83523, Egypt; (A.O.A.); (A.E.A.M.)
| | - Adel E. A. Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City 83523, Egypt; (A.O.A.); (A.E.A.M.)
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Yao Y, Zhang Z, Yang Z. The combination of vaccines and adjuvants to prevent the occurrence of high incidence of infectious diseases in bovine. Front Vet Sci 2023; 10:1243835. [PMID: 37885619 PMCID: PMC10598632 DOI: 10.3389/fvets.2023.1243835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
As the global population grows, the demand for beef and dairy products is also increasing. The cattle industry is facing tremendous pressures and challenges. The expanding cattle industry has led to an increased risk of disease in cattle. These diseases not only cause economic losses but also pose threats to public health and safety. Hence, ensuring the health of cattle is crucial. Vaccination is one of the most economical and effective methods of preventing bovine infectious diseases. However, there are fewer comprehensive reviews of bovine vaccines available. In addition, the variable nature of bovine infectious diseases will result in weakened or even ineffective immune protection from existing vaccines. This shows that it is crucial to improve overall awareness of bovine vaccines. Adjuvants, which are crucial constituents of vaccines, have a significant role in enhancing vaccine response. This review aims to present the latest advances in bovine vaccines mainly including types of bovine vaccines, current status of development of commonly used vaccines, and vaccine adjuvants. In addition, this review highlights the main challenges and outstanding problems of bovine vaccines and adjuvants in the field of research and applications. This review provides a theoretical and practical basis for the eradication of global bovine infectious diseases.
Collapse
Affiliation(s)
- Yiyang Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Nakatsuchi A, Matsumoto Y, Aida Y. Influence of BoLA-DRB3 Polymorphism and Bovine Leukemia Virus (BLV) Infection on Dairy Cattle Productivity. Vet Sci 2023; 10:vetsci10040250. [PMID: 37104405 PMCID: PMC10143785 DOI: 10.3390/vetsci10040250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Enzootic bovine leukosis caused by the bovine leukemia virus (BLV) results in substantial damage to the livestock industry; however, we lack an effective cure or vaccine. BoLA-DRB3 polymorphism in BLV-infected cattle is associated with the proviral load (PVL), infectivity in the blood, development of lymphoma, and in utero infection of calves. Additionally, it is related to the PVL, infectivity, and anti-BLV antibody levels in milk. However, the effects of the BoLA-DRB3 allele and BLV infection on dairy cattle productivity remain poorly understood. Therefore, we investigated the effect of BLV infection and BoLA-DRB3 allele polymorphism on dairy cattle productivity in 147 Holstein dams raised on Japanese dairy farms. Our findings suggested that BLV infection significantly increased milk yield. Furthermore, the BoLA-DRB3 allele alone, and the combined effect of BLV infection and the BoLA-DRB3 allele had no effect. These results indicate that on-farm breeding and selection of resistant cattle, or the preferential elimination of susceptible cattle, does not affect dairy cattle productivity. Additionally, BLV infection is more likely to affect dairy cattle productivity than BoLA-DRB3 polymorphism.
Collapse
Affiliation(s)
- Ayumi Nakatsuchi
- Research and Development Section, Institute of Animal Health, JA Zen-Noh (National Federation of Agricultural Cooperative Associations), 7 Ohja-machi Sakura-shi, Chiba 285-0043, Japan
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: ; Tel.: +81-3-5841-5383
| |
Collapse
|
8
|
Abstract
In the transmission control of chronic and untreatable livestock diseases such as bovine leukemia virus (BLV) infection, the removal of viral superspreaders is a fundamental approach. On the other hand, selective breeding of cattle with BLV-resistant capacity is also critical for reducing the viral damage to productivity by keeping infected cattle. To provide a way of measuring BLV proviral load (PVL) and identifying susceptible/resistant cattle simply and rapidly, we developed a fourplex droplet digital PCR method targeting the BLV pol gene, BLV-susceptible bovine major histocompatibility complex (BoLA)-DRB3*016:01 allele, resistant DRB3*009:02 allele, and housekeeping RPP30 gene (IPATS-BLV). IPATS-BLV successfully measured the percentage of BLV-infected cells and determined allele types precisely. Furthermore, it discriminated homozygous from heterozygous carriers. Using this method to determine the impact of carrying these alleles on the BLV PVL, we found DRB3*009:02-carrying cattle could suppress the PVL to a low or undetectable level, even with the presence of a susceptible heterozygous allele. Although the population of DRB3*016:01-carrying cattle showed significantly higher PVLs compared with cattle carrying other alleles, their individual PVLs were highly variable. Because of the simplicity and speed of this single-well assay, our method has the potential of being a suitable platform for the combined diagnosis of pathogen level and host biomarkers in other infectious diseases satisfying the two following characteristics of disease outcomes: (i) pathogen level acts as a critical maker of disease progression; and (ii) impactful disease-related host genetic biomarkers are already identified. IMPORTANCE While pathogen-level quantification is an important diagnostic of disease severity and transmissibility, disease-related host biomarkers are also useful in predicting outcomes in infectious diseases. In this study, we demonstrate that combined proviral load (PVL) and host biomarker diagnostics can be used to detect bovine leukemia virus (BLV) infection, which has a negative economic impact on the cattle industry. We developed a fourplex droplet digital PCR assay for PVL of BLV and susceptible and resistant host genes named IPATS-BLV. IPATS-BLV has inherent merits in measuring PVL and identifying susceptible and resistant cattle with superior simplicity and speed because of a single-well assay. Our new laboratory technique contributes to strengthening risk-based herd management used to control within-herd BLV transmission. Furthermore, this assay design potentially improves the diagnostics of other infectious diseases by combining the pathogen level and disease-related host genetic biomarker to predict disease outcomes.
Collapse
|
9
|
Pereira JG, Silva CDA, Silva LD, Lima CAA, do Rosário CJRM, Silva EMC, Oliveira MDSC, Ribeiro LSDS, Santos HP, Abreu-Silva AL, Melo FA. Diagnosis and phylogenetic analysis of bovine leukemia virus in dairy cattle in northeastern Brazil. Front Vet Sci 2023; 9:1080994. [PMID: 36713884 PMCID: PMC9880491 DOI: 10.3389/fvets.2022.1080994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Enzootic bovine leukosis (EBL) is a chronic viral disease of wide distribution in cattle herds and may take several years for the first manifestation of clinical signs. Most animals do not present clinical signs. However, the economic losses are underestimated due to this disease. Thus, this work aimed to detect and characterize BLV in dairy cattle in the Maranhão state, northeastern Brazil. Blood samples were collected from 176 animals from 8 municipalities in the southeastern state of Maranhão. Bovine blood samples were subjected to DNA extraction and molecular diagnosis using nested PCR assays for BLV, targeting gp51 gene. Positive samples were then sequenced and then subjected to phylogenetic inferences. BLV DNA was detected in 16 cattle (16/176, 9.09%) in 4 municipalities. Phylogenetic analyzes showed that the sequence obtained clustered in a clade containing BLV sequences classified as genotype 6, with a high degree of support. Our data shows BLV occurrence in the Northeast of Brazil and the identification of genotype 6 in this region. These findings contribute to the molecular epidemiology of this agent in Brazil.
Collapse
|
10
|
Krutko KS, Kinareikina AG, Serkova MI, Silivanova EA, Fedorova OA. Detection of genetic material of causative agents of animal viral diseases in blood-sucking dipterans from the Tyumen Region. RUSSIAN JOURNAL OF PARASITOLOGY 2023. [DOI: 10.31016/1998-8435-2022-16-4-389-402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of the research is to test blood-sucking dipterans collected in the Tyumen Region for genetic material of viruses that cause dangerous diseases in live-stock animals.Materials and methods. From May to October 2021, blood-sucking insects of the Diptera order whose species membership was established by tabular keys were collected on pastures and farms in ten Tyumen Region districts. In 60 samples formed from the captured insects according to the taxonomic affiliation and the period and place of collection, the presence of genetic material of the leukemia provirus and the dermatitis nodularis virus of cattle (bovine) and the African swine fever virus was evaluated by polymerase chain reaction (PCR) in real time.Results and discussion. Adult insects collected for the PCR analysis were blood-sucking flies (family Muscidae, genus Stomoxys), mosquitoes (family Culicidae, genus Aedes), midges (family Simuliidae, genera Byssodon and Schoenbaueria), horseflies (family Tabanidae, genera Hybomitra, Tabanus and Haematopota), and biting midges (family Ceratopogonidae, genus Culicoides). As a result of the PCR testing of the samples for the bovine leukemia provirus DNA, 1 out of 13 samples of Stomoxys spp. (7.7%) and 1 of 13 samples of Hybomitra spp. (7.7%) were positive. The bovine leukemia provirus DNA detected in blood-sucking insects indicates the presence of this pathogen in the insect collection area as well as their possible involvement in its spread. Further research is needed on the Stomoxys spp. and Hybomitra spp. vector competence in vivo, considering natural and climatic features of the Tyumen Region.
Collapse
Affiliation(s)
- K. S. Krutko
- All-Russian Scientific Research Institute of Veterinary Entomology and Arachnology – Branch of Federal State Institution Federal Research Centre Tyumen Scientific Centre of Siberian Branch of the Russian Academy of Sciences (ASRIVEA – Branch of Tyumen Scientific Centre SB RAS)
| | - A. G. Kinareikina
- All-Russian Scientific Research Institute of Veterinary Entomology and Arachnology – Branch of Federal State Institution Federal Research Centre Tyumen Scientific Centre of Siberian Branch of the Russian Academy of Sciences (ASRIVEA – Branch of Tyumen Scientific Centre SB RAS)
| | - M. I. Serkova
- All-Russian Scientific Research Institute of Veterinary Entomology and Arachnology – Branch of Federal State Institution Federal Research Centre Tyumen Scientific Centre of Siberian Branch of the Russian Academy of Sciences (ASRIVEA – Branch of Tyumen Scientific Centre SB RAS)
| | - E. A. Silivanova
- All-Russian Scientific Research Institute of Veterinary Entomology and Arachnology – Branch of Federal State Institution Federal Research Centre Tyumen Scientific Centre of Siberian Branch of the Russian Academy of Sciences (ASRIVEA – Branch of Tyumen Scientific Centre SB RAS)
| | - O. A. Fedorova
- All-Russian Scientific Research Institute of Veterinary Entomology and Arachnology – Branch of Federal State Institution Federal Research Centre Tyumen Scientific Centre of Siberian Branch of the Russian Academy of Sciences (ASRIVEA – Branch of Tyumen Scientific Centre SB RAS)
| |
Collapse
|
11
|
Kanno T, Ishihara R, Mori H, Tomiyasu T, Okazaki K. Impact of amino acid 233 in Tax on bovine leukemia virus infection in Japanese Black cattle. Res Vet Sci 2023; 154:102-107. [PMID: 36571887 DOI: 10.1016/j.rvsc.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Bovine leukemia virus (BLV) is an economically important pathogen that both causes fatal enzootic bovine leukosis (EBL) and reduces lifetime milk production, reproductive efficiency, carcass weight, and longevity in dairy cows. The virus can be divided into two categories based on the amino acid at position 233 in Tax protein, which activates viral transcription and probably plays crucial roles in leukemogenesis. We recently reported that early-onset EBL in Japanese Black (JB) cattle was frequently caused by L233-Tax-carrying virus. This study examined the impact of BLV infection, the proviral load (PVL), and amino acid 233 in Tax on the outcomes of JB cattle. We measured PVL in cattle enrolled between February 2016 and December 2018, determined the Tax type of the isolates, and performed follow-up until March 2022. The results demonstrated that BLV infection increased the risk of involuntary culling and mortality in JB cattle in a PVL-dependent manner. Infection with L233-Tax-carrying virus increased the likelihood of mortality by 1.6-fold compared with the effects of P233-Tax-carrying virus infection. Intrauterine and perinatal infections were frequently caused by L233-Tax-carrying virus, and these infections were likely to influence the early onset of EBL in JB cattle. Conversely, breeding cows infected with P233-Tax-carrying virus were often eliminated by involuntary culling. These findings indicate that amino acid 233 in Tax has importance in terms of preventing economic loss attributable to EBL in JB cattle.
Collapse
Affiliation(s)
- T Kanno
- Division of Pathology and Pathophysiology, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, Japan
| | - R Ishihara
- Division of Pathology and Pathophysiology, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, Japan; Department of Animal Disease Control and Prevention, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki, Japan
| | - H Mori
- Laboratory of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - T Tomiyasu
- Laboratory of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - K Okazaki
- Laboratory of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.
| |
Collapse
|
12
|
Sato H, Fukui JN, Hirano H, Osada H, Arimura Y, Masuda M, Aida Y. Application of the Luminescence Syncytium Induction Assay to Identify Chemical Compounds That Inhibit Bovine Leukemia Virus Replication. Viruses 2022; 15:4. [PMID: 36680045 PMCID: PMC9861517 DOI: 10.3390/v15010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Bovine leukemia virus (BLV) infection causes endemic bovine leukemia and lymphoma, resulting in lower carcass weight and reduced milk production by the infected cattle, leading to economic losses. Without effective measures for treatment and prevention, high rates of BLV infection can cause problems worldwide. BLV research is limited by the lack of a model system to assay infection. To overcome this, we previously developed the luminescence syncytium induction assay (LuSIA), a highly sensitive and objectively quantifiable method for visualizing BLV infectivity. In this study, we applied LuSIA for the high-throughput screening of drugs that could inhibit BLV infection. We screened 625 compounds from a chemical library using LuSIA and identified two that markedly inhibited BLV replication. We then tested the chemical derivatives of those two compounds and identified BSI-625 and -679 as potent inhibitors of BLV replication with low cytotoxicity. Interestingly, BSI-625 and -679 appeared to inhibit different steps of the BLV lifecycle. Thus, LuSIA was applied to successfully identify inhibitors of BLV replication and may be useful for the development of anti-BLV drugs.
Collapse
Affiliation(s)
- Hirotaka Sato
- Department of Microbiology, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
- Virus Infectious Diseases Unit, RIKEN, Saitama 351-0198, Japan
| | - Jun-na Fukui
- Department of Host Defense for Animals, School of Animal Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yutaka Arimura
- Department of Host Defense for Animals, School of Animal Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Michiaki Masuda
- Department of Microbiology, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Yoko Aida
- Virus Infectious Diseases Unit, RIKEN, Saitama 351-0198, Japan
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Nakada S, Fujimoto Y, Kohara J, Makita K. Economic losses associated with mastitis due to bovine leukemia virus infection. J Dairy Sci 2022; 106:576-588. [DOI: 10.3168/jds.2021-21722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
|
14
|
Single-Nucleotide Polymorphism on Spermatogenesis Associated 16 Gene-Coding Region Affecting Bovine Leukemia Virus Proviral Load. Vet Sci 2022; 9:vetsci9060275. [PMID: 35737328 PMCID: PMC9227911 DOI: 10.3390/vetsci9060275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Bovine leukemia virus (BLV) is an etiological agent of malignant lymphoma in cattle and is endemic in many cattle-breeding countries. Thus, the development of cattle genetically resistant to BLV is desirable. The purpose of this study was to identify novel single-nucleotide polymorphisms (SNPs) related to resistance to BLV. A total of 146 DNA samples from cattle with high BLV proviral loads (PVLs) and 142 samples from cattle with low PVLs were used for a genome-wide association study (GWAS). For the verification of the GWAS results, an additional 1342 and 456 DNA samples from BLV-infected Japanese Black and Holstein cattle, respectively, were used for an SNP genotyping PCR to compare the genotypes for the identified SNPs and PVLs. An SNP located on the spermatogenesis associated 16 (SPATA16)-coding region on bovine chromosome 1 was found to exceed the moderate threshold (p < 1.0 × 10−5) in the Additive and Dominant models of the GWAS. The SNP genotyping PCR revealed that the median values of the PVL were 1278 copies/50 ng of genomic DNA for the major homozygous, 843 for the heterozygous, and 621 for the minor homozygous genotypes in the Japanese Black cattle (p < 0.0001). A similar tendency was also observed in the Holstein cattle. We found that cattle with the minor allele for this SNP showed 20−25% lower PVLs. Although the mechanisms through which this SNP impacts the PVL remain unknown, we found a novel SNP related to BLV resistance located on the SPATA16 gene-coding region on bovine chromosome 1.
Collapse
|
15
|
Yoneyama S, Kobayashi S, Matsunaga T, Tonosaki K, Leng D, Sakai Y, Yamada S, Kimura A, Ichijo T, Hikono H, Murakami K. Comparative Evaluation of Three Commercial Quantitative Real-Time PCRs Used in Japan for Bovine Leukemia Virus. Viruses 2022; 14:v14061182. [PMID: 35746654 PMCID: PMC9230052 DOI: 10.3390/v14061182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Bovine leukemia virus (BLV) is an oncogenic virus belonging to the genus Deltaretrovirus and is the causative agent of enzootic bovine leukosis. Proviral load (PVL) determined by real-time quantitative PCR (qPCR) is now widely used as an indicator of not only BLV infection, but also BLV disease progression. To interpret PVLs determined by different qPCRs used in Japan, we compared a chimeric cycling probe-based qPCR, CY415, targeting the BLV tax region; a TaqMan probe-based qPCR, RC202, targeting the BLV pol region; and a TaqMan probe-based qPCR, CoCoMo, targeting the BLV long terminal repeat (LTR) region. Whole-blood samples collected from 317 naturally BLV-infected cattle (165 Holstein–Friesian and 152 Japanese Black) and tumor tissue samples collected from 32 cattle at a meat inspection center were used. The PVLs determined by each qPCR were strongly correlated. However, the PVL and the proportion of BLV-infected cells determined by RC202 or CoCoMo were significantly higher than those determined by CY415. Genetic analysis of three tumor tissue samples revealed that LTR region mutations or a deletion affected the PVL determined by CoCoMo. These results suggest that the TaqMan-based RC202 or CoCoMo qPCR is better than CY415 for BLV PVL analysis. However, qPCR target region mutations were not rare in tumors and could hamper PVL analysis by using qPCR.
Collapse
Affiliation(s)
- Syuji Yoneyama
- Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan; (S.Y.); (D.L.); (Y.S.); (S.Y.)
| | - Sota Kobayashi
- Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba 305-0856, Japan;
| | - Towa Matsunaga
- Department of Veterinary Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan; (T.M.); (A.K.); (T.I.)
| | - Kaoru Tonosaki
- Department of Plant Biosciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Dongze Leng
- Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan; (S.Y.); (D.L.); (Y.S.); (S.Y.)
| | - Yusuke Sakai
- Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan; (S.Y.); (D.L.); (Y.S.); (S.Y.)
| | - Shinji Yamada
- Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan; (S.Y.); (D.L.); (Y.S.); (S.Y.)
- Department of Veterinary Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan; (T.M.); (A.K.); (T.I.)
| | - Atsushi Kimura
- Department of Veterinary Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan; (T.M.); (A.K.); (T.I.)
| | - Toshihiro Ichijo
- Department of Veterinary Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan; (T.M.); (A.K.); (T.I.)
| | - Hirokazu Hikono
- Department of Animal Sciences, Teikyo University of Science, Tokyo 120-0045, Japan;
| | - Kenji Murakami
- Graduate School of Veterinary Sciences, Iwate University, Morioka 020-8550, Japan; (S.Y.); (D.L.); (Y.S.); (S.Y.)
- Department of Veterinary Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan; (T.M.); (A.K.); (T.I.)
- Correspondence:
| |
Collapse
|
16
|
BoLA-DRB3 Polymorphism Controls Proviral Load and Infectivity of Bovine Leukemia Virus (BLV) in Milk. Pathogens 2022; 11:pathogens11020210. [PMID: 35215153 PMCID: PMC8879029 DOI: 10.3390/pathogens11020210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bovine leukemia virus (BLV), which causes enzootic bovine leukosis, is transmitted to calves through the milk of BLV-infected dams. Bovine leukocyte antigen (BoLA)-DRB3 is a polymorphic gene associated with BLV infectivity and proviral load (PVL). However, the effect of BoLA-DRB3 polymorphism on the infectivity and PVL of milk from BLV-infected dams remains unknown. This study examined milk from 259 BLV-infected dams, including susceptible dams carrying at least one BoLA-DRB3*012:01 or *015:01 allele with high PVL, resistant dams carrying at least one BoLA-DRB3*002:01, *009:02, or *014:01:01 allele with low PVL, and neutral dams carrying other alleles. The detection rate of BLV provirus and PVL were significantly higher in milk from susceptible dams than in that from resistant dams. This result was confirmed in a three-year follow-up study in which milk from susceptible dams showed a higher BLV provirus detection rate over a longer period than that from resistant dams. The visualization of infectivity of milk cells using a luminescence syncytium induction assay showed that the infectious risk of milk from BLV-infected dams was markedly high for susceptible dams compared to resistant ones. This is the first report confirming that BoLA-DRB3 polymorphism affects the PVL and infectivity of milk from BLV-infected dams.
Collapse
|