1
|
Yeşilbağ K, Aytoğu G, Kadiroğlu B, Ateş Ö, Toker EB, Yaşar M. Pathogenicity assessment of a bovine viral diarrhea virus type 1l (BVDV-1l) strain in experimentally infected calves. Vet Microbiol 2024; 289:109945. [PMID: 38154395 DOI: 10.1016/j.vetmic.2023.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/02/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023]
Abstract
Bovine viral diarrhea is a widespread and economically important viral disease for livestock which can cause clinically diverse manifestations. The number of established BVDV subgenotypes has increased, not only the serological relationships of recently described subgenotypes but virulence and pathogenic characteristics have not yet been mostly elaborated. The dominant BVDV subgenotype in Turkiye was elaborated to be BVDV-1l, that involves more than half of field strains and there is no scientific data to identify the pathogenicity of this strain so far. This study investigated the pathogenicity of a selected field strain (TR-72) from subgenotype BVDV-1l. Experimental infection was implemented by intranasal inoculation of the strain TR-72 (10 ×105.5) to four young calves which were previously not vaccinated and were free both for BVDV antibodies and antigens. Clinical changes as well as blood parameters, body temperature, and viremia were monitored for 14 days. Only mild clinical signs associated with respiratory signs of BVDV infection were observed. Detected clinical signs included nasal discharge, conjunctivitis, cough, fatigue, high rectal temperature reaching 40.7 ℃, and white blood cell counts depression started from the 2nd day and 40.4% decreased between the 12th and 14th days post-infection (poi). The presence of viremia was investigated by virus isolation, RT-PCR, and real-time RT-PCR from blood samples. The efficiency of experimental infection was established not only by observed clinical signs but also by virus isolation from blood leukocytes between the 5th and 8th days poi., virus detection was obtained by real-time PCR between the 3rd - 13th days poi. Besides, the recorded mild clinical signs, high fever, long duration of viremia , and high decrease in blood parameters obtained in this study, it was shown that the noncytopathogenic BVDV-1l strain TR-72 has a moderate virulence in naïve cattle.
Collapse
Affiliation(s)
- Kadir Yeşilbağ
- Department of Virology, Bursa Uludag University, Faculty of Veterinary Medicine, 16059 Bursa, Turkiye.
| | - Gizem Aytoğu
- Department of Virology, Bursa Uludag University, Faculty of Veterinary Medicine, 16059 Bursa, Turkiye
| | - Berfin Kadiroğlu
- Department of Virology, Dicle University, Faculty of Veterinary Medicine, 21200 Diyarbakır, Turkiye
| | - Özer Ateş
- Department of Virology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03204 Afyonkarahisar, Turkiye
| | - Eda Baldan Toker
- Department of Virology, Bursa Uludag University, Faculty of Veterinary Medicine, 16059 Bursa, Turkiye
| | - Mevlüt Yaşar
- Department of Virology, Bursa Uludag University, Faculty of Veterinary Medicine, 16059 Bursa, Turkiye
| |
Collapse
|
2
|
Development and application of an indirect ELISA for the serological detection of bovine viral diarrhea virus infection based on the protein E2 antigen. Mol Biol Rep 2023; 50:4707-4713. [PMID: 36849860 DOI: 10.1007/s11033-022-08226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 03/01/2023]
Abstract
BACKGROUND Bovine viral diarrhea virus (BVDV) causes continuous economic losses to the livestock industry. Monitoring antibodies with enzyme-linked immunosorbent assay (ELISA) is a valuable tool to ensure the purification of BVDV in cattle. However, currently available ELISA kits based on the whole BVDV virion are both costly and time-consuming. The E2 protein has good immunogenicity, induces the secretion of neutralizing antibodies and is an essential immunogen for serological detection. METHODS AND RESULTS We developed a novel recombinant E2 protein-based indirect ELISA (rE2-iELISA) and conducted a serological survey for BVDV antibodies in 2021-2022 in Beijing, China. The results showed that E2 protein was successfully expressed with high immunogenicity and the optimal rE2-iELISA displayed high sensitivity, reproducibility and specificity. Clinical testing of 566 serum specimens indicated that 318 BVDV positive samples and 194 BVDV negative samples were tested by rE2-iELISA and the IDEXX BVDV ELISA-Ab kit, with a positive coincidence rate of 93.3%, a negative coincidence rate of 86.3%, and an overall coincidence rate of 90.5%. CONCLUSION This study established an rE2-iELISA method, which is a highly sensitive, specific and robust ELISA-test validated to detect anti-BVDV antibodies. These findings indicate that the newly developed rE2-iELISA method has the potential to be used as a rapid, reliable and cost-effective screening tool for BVDV infection and provides technical support for the evaluation of vaccine efficacy in cattle herds in the future.
Collapse
|
3
|
Fountain J, Manyweathers J, Brookes VJ, Hernandez-Jover M. Understanding biosecurity behaviors of Australian beef cattle farmers using the ten basic human values framework. Front Vet Sci 2023; 10:1072929. [PMID: 36923052 PMCID: PMC10010389 DOI: 10.3389/fvets.2023.1072929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Introduction On-farm biosecurity is an essential component of successful disease management in the beef cattle industry on an individual, regional, and national level. Participation in mandatory or voluntary assurance schemes, knowledge and trusted relationships have all been demonstrated to contribute to the development of behaviors that promote biosecurity. However, compliance with rules, socio-psychological relationships and knowledge-seeking behavior are all contingent upon the motivations and beliefs of the individual. It is widely accepted that the motivations and beliefs of all cultures can be defined by ten basic values (Self-direction, Stimulation, Hedonism, Achievement, Power, Security, Conformity, Tradition, Benevolence and Universalism). In this study, we use the ten basic values to characterize the on-farm biosecurity behaviors of Australian beef farmers to facilitate the identification of interventions that are most likely to align with producer motivations and therefore, more likely to result in wider adoption of effective on-farm biosecurity. Methods Semi-structured interviews were conducted with 11 Australian beef farmers to discuss the reasons behind decisions to alter or implement biosecurity practices in response to endemic diseases. Thematic analysis was used to identify the motivations, opportunities, and capability of biosecurity behaviors. The ten basic human values were used to characterize these behaviors and inform enablers and barriers to biosecurity adoption. Results and discussion Benevolence and Self-direction, relating to self-transcendence and an openness to change, were the principal values associated with good biosecurity behaviors. This suggests that farmers will be receptive to education strategies that communicate the actual risk of disease in their area, the impact of disease on animal welfare, and the ability for on-farm biosecurity to mitigate these impacts. Farmers also expressed values of Security which entrenched behaviors as common practice; however, in some cases the Security of trusted relationships was identified as a potential barrier to behavior change. Overall, values associated with biosecurity behaviors were found to align with values that are most important for social cohesion, suggesting that collaborative disease efforts between industry stakeholders and farmers are likely to succeed if designed with these values in mind.
Collapse
Affiliation(s)
- Jake Fountain
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia.,School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Jennifer Manyweathers
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia.,School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Victoria J Brookes
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Marta Hernandez-Jover
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia.,School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
4
|
Fountain J, Hernandez-Jover M, Manyweathers J, Hayes L, Brookes VJ. The right strategy for you: Using the preferences of beef farmers to guide biosecurity recommendations for on-farm management of endemic disease. Prev Vet Med 2023; 210:105813. [PMID: 36495705 DOI: 10.1016/j.prevetmed.2022.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/11/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Effective on-farm biosecurity measures are crucial to the post-border protection of emerging agricultural diseases and are the foundation of endemic disease control. Implementation of on-farm biosecurity measures are contingent on the priorities of individual producers, which can often be neglected for other aspects of the farming enterprise. The on-farm approach to prevention of endemic diseases, like bovine viral diarrhoea virus (BVDV), is inconsistent between farms and it is not realistic to assume that farmers take an entirely normative approach to on-farm decision making. Multi-criteria decision analysis (MCDA) has been used for disease prioritisation and national disease control in human and animal health; however, it is yet to be used as a decision tool for disease control at the farm level. This study used MCDA to determine the most appropriate biosecurity combinations for management of BVDV, based on the preferences of Australian beef producers. Beef producer preferences were obtained from an online survey using indirect collection methods. Point of truth calibration was used to aggregate producer preferences and the performance scores of 23 biosecurity combinations for control of BVDV based on four main criteria: the probability of BVDV introduction, the on-farm impact of BVDV, the off-farm impact of BVDV and the annual input cost of the practice. The MCDA found that biosecurity combinations that included "double-fencing farm boundaries" used in conjunction with "vaccination against BVDV" were most appropriate for management of BVDV in an initially naïve, self-replacing seasonal single-calving beef herd over a 15-year period. Beef producers prioritised practices that preserved the on-farm health of their cattle more than any other criteria, a finding that was persistent regardless of demographic or farming type. Consequently, combinations with "vaccination against BVDV" were consistently ranked higher than those that included "strategic exposure of a persistently infected cow," which is sometimes used by Australian beef producers instead of vaccination. Findings of this study indicate that the benefits of "double-fencing farm boundaries" and "vaccination against BVDV" outweigh the relatively high cost associated with these practices based on the priorities of the Australian beef producer and may be used to demonstrate the benefits of on-farm biosecurity during discussions between livestock veterinarians and beef farmers.
Collapse
Affiliation(s)
- Jake Fountain
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia.
| | - Marta Hernandez-Jover
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia.
| | - Jennifer Manyweathers
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia.
| | - Lynne Hayes
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia.
| | - Victoria J Brookes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|