1
|
Abed RMM, Al-Hinai M, Al-Balushi Y, Haider L, Muthukrishnan T, Rinner U. Degradation of starch-based bioplastic bags in the pelagic and benthic zones of the Gulf of Oman. MARINE POLLUTION BULLETIN 2023; 195:115496. [PMID: 37703633 DOI: 10.1016/j.marpolbul.2023.115496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/21/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
The Gulf of Oman is becoming increasingly polluted with plastics, hence bioplastics have been considered 'a substitute', although their biodegradability in marine environments has not been well investigated. Most research has been performed on cellulose-based bioplastics, whereas starch-based bioplastics have proven to be a suitable, but less researched, alternative. This study is the first of its kind designed to investigate the degradability of two different types of starch-based bioplastic bags, available in the market and labeled as "biodegradable", in the pelagic and benthic zones of one of the warmest marine environment in the world. Fourier-Transform Infrared Spectroscopy (FTIR) showed a clear reduction in the presence of OH, CH, and CO in the bioplastic bags after 5 weeks of immersion. Thermo-Gravimetric Analysis (TGA) indicated degradation of glycerol, starch, and polyethylene. The biofouling bacterial communities on bioplastic surfaces showed distinct grouping based on the immersion zone. Candidaatus saccharibacteria, Verrucomicrobiae, Acidimicrobiia and Planctomycetia sequences were only detectable on bioplastics in the pelagic zone, whereas Actinomyces, Pseudomonas, Sphingobium and Acinetobacter related sequences were only found on bioplastics in the benthic layer. We conclude that starch-based bioplastics are more readily degradable in the Gulf of Oman than conventional plastics, hence could serve as a better environmentally friendly alternative.
Collapse
Affiliation(s)
- Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123 Al Khoud, Sultanate of Oman.
| | - Mahmood Al-Hinai
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123 Al Khoud, Sultanate of Oman
| | - Yasmin Al-Balushi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123 Al Khoud, Sultanate of Oman
| | - Lorenz Haider
- Institute of Applied Chemistry, IMC University of Applied Sciences Krems, Piaristengasse 1, 3500 Krems, Austria
| | - Thirumahal Muthukrishnan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario M5S 3E5, Canada
| | - Uwe Rinner
- Institute of Applied Chemistry, IMC University of Applied Sciences Krems, Piaristengasse 1, 3500 Krems, Austria
| |
Collapse
|
2
|
Taibi H, Boudries N, Abdelhai M, Lounici H. Comparison of Immobilized and Free Amyloglucosidase Process in Glucose SyrupsProduction from White Sorghum Starch. Chem Biodivers 2023; 20:e202300071. [PMID: 37410997 DOI: 10.1002/cbdv.202300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Optimum conditions for glucose syrups production from white sorghum were studied through sequential liquefaction and saccharification processes. In the liquefaction process, a maximum dextrose equivalent (DE) of 10.98 % was achieved using 30 % (w/v) of starch and Termamyl ɑ-amylase from Bacillus licheniformis. Saccharification was performed by free and immobilized amyloglucosidase from Rhizopus mold at 1 % (w/v). DE values of 88.32 % and 79.95 % were obtained from 30 % (w/v) of starch with, respectively, free and immobilized enzyme. The immobilized Amyloglucosidase in calcium alginate beads showed reusable capacity for up to 6 cycles with 46 % of the original activity retained. The kinetic behaviour of immobilized and free enzyme gives Km value of 22.13 and 16.55 mg mL-1 and Vmax of 0.69 and 1.61 mg mL-1 min-1 , respectively. The hydrolysis yield using immobilized amyloglucosidase were lower than that of the free one. However, it is relevant to reuse enzyme without losing activity in order to trim down the overall costs of enzymatic bioprocesses as starch transformation into required products in industrial manufacturing. Hydrolysis of sorghum starch using immobilized amyloglucosidase represents a promising alternative towards the development of the glucose syrups production process and its utilization in various industries.
Collapse
Affiliation(s)
- Houria Taibi
- Laboratory of Bioactive Products and Biomass Valorization Research, Département de Chimie, Ecole Normale Supérieure Cheikh Mohamed El-Bachir El-Ibrahimi, ENS-KOUBA, BO 92 Vieux, Kouba, Algiers, Algeria
| | - Nadia Boudries
- Laboratory of Bioactive Products and Biomass Valorization Research, Département de Chimie, Ecole Normale Supérieure Cheikh Mohamed El-Bachir El-Ibrahimi, ENS-KOUBA, BO 92 Vieux, Kouba, Algiers, Algeria
| | - Moufida Abdelhai
- Laboratory of Bioactive Products and Biomass Valorization Research, Département de Chimie, Ecole Normale Supérieure Cheikh Mohamed El-Bachir El-Ibrahimi, ENS-KOUBA, BO 92 Vieux, Kouba, Algiers, Algeria
| | - Hakim Lounici
- Laboratory of Materials and Sustainable Development, Université Akli Mohand Oulhadj, Bouira. Avenue Drissi Yahia, Bouira-Algérie, Algeria
| |
Collapse
|
3
|
da S. Pereira A, Souza CPL, Moraes L, Fontes-Sant’Ana GC, Amaral PFF. Polymers as Encapsulating Agents and Delivery Vehicles of Enzymes. Polymers (Basel) 2021; 13:polym13234061. [PMID: 34883565 PMCID: PMC8659040 DOI: 10.3390/polym13234061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/15/2023] Open
Abstract
Enzymes are versatile biomolecules with broad applications. Since they are biological molecules, they can be easily destabilized when placed in adverse environmental conditions, such as variations in temperature, pH, or ionic strength. In this sense, the use of protective structures, as polymeric capsules, has been an excellent approach to maintain the catalytic stability of enzymes during their application. Thus, in this review, we report the use of polymeric materials as enzyme encapsulation agents, recent technological developments related to this subject, and characterization methodologies and possible applications of the formed bioactive structures. Our search detected that the most explored methods for enzyme encapsulation are ionotropic gelation, spray drying, freeze-drying, nanoprecipitation, and electrospinning. α-chymotrypsin, lysozyme, and β-galactosidase were the most used enzymes in encapsulations, with chitosan and sodium alginate being the main polymers. Furthermore, most studies reported high encapsulation efficiency, enzyme activity maintenance, and stability improvement at pH, temperature, and storage. Therefore, the information presented here shows a direction for the development of encapsulation systems capable of stabilizing different enzymes and obtaining better performance during application.
Collapse
Affiliation(s)
- Adejanildo da S. Pereira
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (A.d.S.P.); (C.P.L.S.); (L.M.)
| | - Camila P. L. Souza
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (A.d.S.P.); (C.P.L.S.); (L.M.)
| | - Lidiane Moraes
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (A.d.S.P.); (C.P.L.S.); (L.M.)
| | - Gizele C. Fontes-Sant’Ana
- Biochemical Processes Technology Department, Chemistry Institute, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil;
| | - Priscilla F. F. Amaral
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (A.d.S.P.); (C.P.L.S.); (L.M.)
- Correspondence: ; Tel.: +55-21-3938-7623
| |
Collapse
|
4
|
Meena J, Gupta A, Ahuja R, Singh M, Panda AK. Recent advances in nano-engineered approaches used for enzyme immobilization with enhanced activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Mokhtar NF, Rahman RNZ, Sani F, Ali MS. Extraction and reimmobilization of used commercial lipase from industrial waste. Int J Biol Macromol 2021; 176:413-423. [PMID: 33556405 DOI: 10.1016/j.ijbiomac.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/19/2022]
Abstract
In industrial application, immobilized lipase are typically not reused and served as industrial waste after a certain process is completed. The capacity on the reusability of the spent lipase is not well studied. This current study embarks on reusing the remaining lipase from the spent immobilized enzyme. Active lipases were recovered using a simple reverse micellar extraction (RME). RME is the extraction process of targeted biomolecules using an organic solvent and a surfactant. This method was the first attempt reported on the recovery of the lipase from the used immobilized lipase. RME of the spent lipase was done using the nonionic Triton X-100 surfactant and toluene. Various parameters were optimized to maximize the lipase recovery from the used immobilized lipase. The optimum forward extraction condition was 0.075 M KCl, and backward conditions were at 0.15 M Triton X-100/toluene (pH 6, 2 M KCl) with recovery of 66%. The extracted lipase was immobilized via simple adsorption into the ethanol pretreated carrier. The optimum conditions of immobilization resulted in 96% of the extracted lipase was reimmobilized. The reimmobilized lipase was incubated for 20 h in pH 6 buffer at 50 °C of water bath shaker. The reimmobilized lipase still had 27% residual activity after 18 h of incubation, which higher thermal stability compared to the free lipase. In conclusion, the free lipase was successfully extracted from the spent immobilized lipase and reimmobilized into the new support. It exhibited high thermal stability, and the reusability of the spent lipase will promote continued use of industrial lipase and reduce the cost of the manufacturing process.
Collapse
Affiliation(s)
- Nur Fathiah Mokhtar
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Rahman
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fatimah Sani
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Ali
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Wang X, Tang D, Wang W. Characterization of Pseudomonas protegens SN15-2 microcapsule encapsulated with oxidized alginate and starch. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1760270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaobing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Danyan Tang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Roquero DM, Bollella P, Melman A, Katz E. Nanozyme-Triggered DNA Release from Alginate Films. ACS APPLIED BIO MATERIALS 2020; 3:3741-3750. [DOI: 10.1021/acsabm.0c00348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Daniel Massana Roquero
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| |
Collapse
|
8
|
Hesham AEL, Mostafa YS, AlSharqi LEO. Optimization of Citric Acid Production by Immobilized Cells of Novel Yeast Isolates. MYCOBIOLOGY 2020; 48:122-132. [PMID: 32363040 PMCID: PMC7178817 DOI: 10.1080/12298093.2020.1726854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
Abstract
Citric acid is a commercially valuable organic acid widely used in food, pharmaceutical, and beverage industries. In this study, 260 yeast strains were isolated from soil, bread, juices, and fruits wastes and preliminarily screened using bromocresol green agar plates for their ability to produce organic acids. Overall, 251 yeast isolates showed positive results, with yellow halos surrounding the colonies. Citric acid production by 20 promising isolates was evaluated using both free and immobilized cell techniques. Results showed that citric acid production by immobilized cells (30-40 g/L) was greater than that of freely suspended cells (8-19 g/L). Of the 20 isolates, two (KKU-L42 and KKU-L53) were selected for further analysis based on their citric acid production levels. Immobilized KKU-L42 cells had a higher citric acid production rate (62.5%), while immobilized KKU-L53 cells showed an ∼52.2% increase in citric acid production compared with free cells. The two isolates were accurately identified by amplification and sequence analysis of the 26S rRNA gene D1/D2 domain, with GenBank-based sequence comparison confirming that isolates KKU-L42 and KKU-L53 were Candida tropicalis and Pichia kluyveri, respectively. Several factors, including fermentation period, pH, temperature, and carbon and nitrogen source, were optimized for enhanced production of citric acid by both isolates. Maximum production was achieved at fermentation period of 5 days at pH 5.0 with glucose as a carbon source by both isolates. The optimum incubation temperature for citric acid production by C. tropicalis was 32 °C, with NH4Cl the best nitrogen source, while maximum citric acid by P. kluyveri was observed at 27 °C with (NH4)2 SO4 as the nitrogen source. Citric acid production was maintained for about four repeated batches over a period of 20 days. Our results suggest that apple and banana wastes are potential sources of novel yeast strains; C. tropicalis and P. kluyveri which could be used for commercial citric acid production.
Collapse
Affiliation(s)
- Abd El-Latif Hesham
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | - Yasser S. Mostafa
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
9
|
Ghollasi M. Electrospun Polyethersulfone Nanofibers: A Novel Matrix for Alpha-Amylase Immobilization. ACTA ACUST UNITED AC 2018. [DOI: 10.29252/jabr.01.01.04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Mohammadzadeh R, Agheshlouie M, Mahdavinia GR. Expression of chitinase gene in BL21 pET system and investigating the biocatalystic performance of chitinase-loaded AlgSep nanocomposite beads. Int J Biol Macromol 2017; 104:1664-1671. [DOI: 10.1016/j.ijbiomac.2017.03.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/10/2017] [Accepted: 03/21/2017] [Indexed: 01/30/2023]
|
11
|
Bruna F, Pereira MG, Polizeli MDLTM, Valim JB. Starch Biocatalyst Based on α-Amylase-Mg/Al-Layered Double Hydroxide Nanohybrids. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18832-18842. [PMID: 26259168 DOI: 10.1021/acsami.5b05668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The design of new biocatalysts through the immobilization of enzymes, improving their stability and reuse, plays a major role in the development of sustainable methodologies toward the so-called green chemistry. In this work, α-amylase (AAM) biocatalyst based on Mg3Al-layered double-hydroxide (LDH) matrix was successfully developed with the adsorption method. The adsorption process was studied and optimized as a function of time and enzyme concentration. The biocatalyst was characterized, and the mechanism of interaction between AAM and LDH, as well as the immobilization effects on the catalytic activity, was elucidated. The adsorption process was fast and irreversible, thus yielding a stable biohybrid material. The immobilized AAM partially retained its enzymatic activity, and the biocatalyst rapidly hydrolyzed starch in an aqueous solution with enhanced efficiency at intermediate loading values of ca. 50 mg/g of AAM/LDH. Multiple attachments through electrostatic interactions affected the conformation of the immobilized enzyme on the LDH surface. The biocatalyst was successfully stored in its dry form, retaining 100% of its catalytic activity. The results reveal the potential usefulness of a LDH compound as a support of α-amylase for the hydrolysis of starch that may be applied in industrial and pharmaceutical processes as a simple, environmentally friendly, and low-cost biocatalyst.
Collapse
Affiliation(s)
- Felipe Bruna
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto and ‡Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Avenida Bandeirantes 3900, Monte Alegre, 14.040-901 Ribeirão Preto, São Paulo, Brazil
| | - Marita G Pereira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto and ‡Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Avenida Bandeirantes 3900, Monte Alegre, 14.040-901 Ribeirão Preto, São Paulo, Brazil
| | - Maria de Lourdes T M Polizeli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto and ‡Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Avenida Bandeirantes 3900, Monte Alegre, 14.040-901 Ribeirão Preto, São Paulo, Brazil
| | - João B Valim
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto and ‡Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Avenida Bandeirantes 3900, Monte Alegre, 14.040-901 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
12
|
Characterization of Raoultella planticola Rs-2 microcapsule prepared with a blend of alginate and starch and its release behavior. Carbohydr Polym 2014; 110:259-67. [DOI: 10.1016/j.carbpol.2014.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/17/2014] [Accepted: 04/03/2014] [Indexed: 11/22/2022]
|
13
|
Abd Rahim SN, Sulaiman A, Ku Hamid KH, Mohd Rodhi MN, Mohibah M, Hamzah F, Edama NA. Nanoclay Supporting Materials for Enzymes Immobilization: Kinetics Investigation of Free and Immobilized System. APPLIED MECHANICS AND MATERIALS 2013; 393:115-120. [DOI: 10.4028/www.scientific.net/amm.393.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In this paper, the kinetic parameters of free and encapsulated enzymes in the calcium alginate-clay beads were determined using Lineweaver-Burk plot. The Michaelis constant, Kmof free alpha-amylase, glucoamylase and cellulase were 2.0831, 1.8326 and 7.8592 mg/mL, respectively, whereas for the encapsulated system, the Kmvalues were 3.1604, 2.1708 and 9.2791 mg/mL, respectively. The results showed encapsulation enzymes gave higher Kmvalue than the free enzymes. Comparatively the encapsulated alpha-amylase was 1.5 times higher and the glucoamylase and cellulase were 1.18 times higher. This suggests that the affinity of encapsulated enzymes for substrate was lower which might be due to the diffusional limitation of the substrate and enzymes. Amongst the three in both systems, glucoamylase was determined to have highest affinity followed by alpha-amylase and cellulase enzymes.
Collapse
|
14
|
Say R, Şenay RH, Biçen Ö, Ersöz A, Şişman Yılmaz F, Akgöl S, Denizli A. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1900-6. [DOI: 10.1016/j.msec.2012.12.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 10/06/2012] [Accepted: 12/16/2012] [Indexed: 01/28/2023]
|
15
|
Abstract
This article surveys methods for the enzymatic conversion of starch, involving hydrolases and nonhydrolyzing enzymes, as well as the role of microorganisms producing such enzymes. The sources of the most common enzymes are listed. These starch conversions are also presented in relation to their applications in the food, pharmaceutical, pulp, textile, and other branches of industry. Some sections are devoted to the fermentation of starch to ethanol and other products, and to the production of cyclodextrins, along with the properties of these products. Light is also shed on the enzymes involved in the digestion of starch in human and animal organisms. Enzymatic processes acting on starch are useful in structural studies of the substrates and in understanding the characteristics of digesting enzymes. One section presents the application of enzymes to these problems. The information that is included covers the period from the early 19th century up to 2009.
Collapse
|
16
|
Abd Rahim SN, Sulaiman A, Edama NA, Hamid KHK, Rodhi MNM, Musa M, Hamzah F. Kinetic study of free and immobilized enzymes for bioconversion of tapioca slurry into BioSugar. 2013 IEEE BUSINESS ENGINEERING AND INDUSTRIAL APPLICATIONS COLLOQUIUM (BEIAC) 2013. [DOI: 10.1109/beiac.2013.6560195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Rahim SNA, Sulaiman A, Hamzah F, Hamid KHK, Rodhi MNM, Musa M, Edama NA. Enzymes Encapsulation within Calcium Alginate-clay Beads: Characterization and Application for Cassava Slurry Saccharification. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.proeng.2013.12.200] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Franssen MCR, Steunenberg P, Scott EL, Zuilhof H, Sanders JPM. Immobilised enzymes in biorenewables production. Chem Soc Rev 2013; 42:6491-533. [DOI: 10.1039/c3cs00004d] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Calcium alginate beads encapsulated PMMA-g-CS nano-particles for α-chymotrypsin immobilization. Carbohydr Polym 2012; 92:2095-102. [PMID: 23399263 DOI: 10.1016/j.carbpol.2012.11.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 11/21/2022]
Abstract
Chitosan grafted with polymethyl methacrylate (PMMA-g-CS) was prepared via a free-radicals polymerization technique as a carrier for enzyme immobilization. α-Chymotrypsin (CT), as an enzyme model in this study, was immobilized onto the prepared PMMA-g-CS via covalent bonding. Calcium alginate (CA) beads were developed for encapsulating PMMA-g-CS-CT to produce PMMA-g-CS-CT/CA composite beads. Morphology and size of PMMA-g-CS particles were investigated by TEM and found to be in the nanoscale. The structure and surface morphology of the beads before and after immobilization process were characterized by FT-IR and SEM, respectively. Both the bound CT content and relative activity of immobilized enzyme were measured. A higher retained activity (about 97.7%) obtained for the immobilized CT at pH 9 for 24 h. The results indicated that immobilized CT maintained excellent performance even after 25 reuses and retained 75% from its original activity after 60 days of storage at 25 °C.
Collapse
|
20
|
Abstract
A general mathematical model for a fixed bed immobilized enzyme reactor was developed to simulate the process of diffusion and reaction inside the biocatalyst particle. The modeling and simulation of starch hydrolysis using immobilized α-amylase were used as a model for this study. Corn starch hydrolysis was carried out at a constant pH of 5.5 and temperature of 50°C. The substrate flow rate was ranging from 0.2 to 5.0 mL/min, substrate initial concentrations 1 to 100 g/L. α-amylase was immobilized on to calcium alginate hydrogel beads of 2 mm average diameter. In this work Michaelis-Menten kinetics have been considered. The effect of substrate flow rate (i.e., residence time) and initial concentration on intraparticle diffusion have been taken into consideration. The performance of the system is found to be affected by the substrate flow rate and initial concentrations. The reaction is controlled by the reaction rate. The model equation was a nonlinear second order differential equation simulated based on the experimental data for steady state condition. The simulation was achieved numerically using FINITE ELEMENTS in MATLAB software package. The simulated results give satisfactory results for substrate and product concentration profiles within the biocatalyst bead.
Collapse
|
21
|
Kikani BA, Pandey S, Singh SP. Immobilization of the α-amylase of Bacillus amyloliquifaciens TSWK1-1 for the improved biocatalytic properties and solvent tolerance. Bioprocess Biosyst Eng 2012; 36:567-77. [DOI: 10.1007/s00449-012-0812-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
|
22
|
Osman B, Kara A, Demirbel E, Kök S, Beşirli N. Adsorption Equilibrium, Kinetics and Thermodynamics of α-Amylase on Poly(DVB-VIM)-Cu+2 Magnetic Metal-Chelate Affinity Sorbent. Appl Biochem Biotechnol 2012; 168:279-94. [DOI: 10.1007/s12010-012-9771-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 06/06/2012] [Indexed: 11/25/2022]
|
23
|
Kashima K, Imai M. Impact Factors to Regulate Mass Transfer Characteristics of Stable Alginate Membrane Performed Superior Sensitivity on Various Organic Chemicals. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proeng.2012.07.490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Pachariyanon P, Barth E, Agar DW. Enzyme immobilisation in permselective microcapsules. J Microencapsul 2011; 28:370-83. [DOI: 10.3109/02652048.2011.576781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Zhou ZD, Li GY, Li YJ. Immobilization of Saccharomyces cerevisiae alcohol dehydrogenase on hybrid alginate–chitosan beads. Int J Biol Macromol 2010; 47:21-6. [DOI: 10.1016/j.ijbiomac.2010.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
|
26
|
Tee BL, Kaletunç G. Immobilization of a thermostable alpha-amylase by covalent binding to an alginate matrix increases high temperature usability. Biotechnol Prog 2009; 25:436-45. [PMID: 19353735 DOI: 10.1002/btpr.117] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Thermostable alpha-amylase was covalently bound to calcium alginate matrix to be used for starch hydrolysis at liquefaction temperature of 95 degrees C. 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide hydrochloride (EDAC) was used as crosslinker. EDAC reacts with the carboxylate groups on the calcium alginate matrix and the amine groups of the enzyme. Ethylenediamine tetraacetic acid (EDTA) treatment was applied to increase the number of available carboxylate groups on the calcium alginate matrix for EDAC binding. After the immobilization was completed, the beads were treated with 0.1 M calcium chloride solution to reinstate the bead mechanical strength. Enzyme loading efficiency, activity, and reusability of the immobilized alpha-amylase were investigated. Covalently bound thermostable alpha-amylase to calcium alginate produced a total of 53 g of starch degradation/mg of bound protein after seven consecutive starch hydrolysis cycles of 10 min each at 95 degrees C in a stirred batch reactor. The free and covalently bound alpha-amylase had maximum activity at pH 5.5 and 6.0, respectively. The Michaelis-Menten constant (K(m)) of the immobilized enzyme (0.98 mg/mL) was 2.5 times greater than that of the free enzyme (0.40 mg/mL). The maximum reaction rate (V(max)) of immobilized and free enzyme were determined to be 10.4-mg starch degraded/mL min mg bound protein and 25.7-mg starch degraded/mL min mg protein, respectively. The high cumulative activity and seven successive reuses obtained at liquefaction temperature make the covalently bound thermostable alpha-amylase to calcium alginate matrix, a promising candidate for use in industrial starch hydrolysis process.
Collapse
Affiliation(s)
- Boon L Tee
- Food Agricultural and Biological Engineering Dept., The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA
| | | |
Collapse
|
27
|
|
28
|
Yagar H, Ertan F, Balkan B. Comparison of some properties of free and immobilized alpha-amylase by Aspergillus sclerotiorum in calcium alginate gel beads. Prep Biochem Biotechnol 2008; 38:13-23. [PMID: 18080907 DOI: 10.1080/10826060701774304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Some properties of immobilized alpha-amylase by Aspergillus sclerotiorum within calcium alginate gel beads were investigated and compared with soluble enzyme. Optimum pH and temperature were found to be 5.0 and 40 degrees C, respectively, for both soluble and immobilized enzymes. The immobilized enzyme had a better Km value, but kcat/Km values were the same for both enzymes. Entrapment within calcium alginate gel beads improved, remarkably, the thermal and storage stability of alpha-amylase. The half life values of immobilized enzyme and soluble enzyme at 60 degrees C were 164.2, and 26.2 min, respectively. The midpoint of thermal inactivation (Tm) shifted from 56 degrees C (for soluble enzyme) to 65.4 degrees C for immobilized enzyme. The percentages of soluble starch hydrolysis for soluble and immobilized alpha-amylase were determined to be 97.5 and 92.2% for 60 min, respectively.
Collapse
Affiliation(s)
- Hulya Yagar
- Faculty of Science and Art, Department of Chemistry, Trakya University, Edirne, Turkey.
| | | | | |
Collapse
|
29
|
Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp. PG01. Process Biochem 2007. [DOI: 10.1016/j.procbio.2006.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Konsoula Z, Liakopoulou-Kyriakides M. Thermostable α-amylase production by Bacillus subtilis entrapped in calcium alginate gel capsules. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|