1
|
Yessentayeva K, Reinhard A, Berzhanova R, Mukasheva T, Urich T, Mikolasch A. Bacterial crude oil and polyaromatic hydrocarbon degraders from Kazakh oil fields as barley growth support. Appl Microbiol Biotechnol 2024; 108:189. [PMID: 38305872 PMCID: PMC10837267 DOI: 10.1007/s00253-024-13010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.
Collapse
Affiliation(s)
- Kuralay Yessentayeva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Anne Reinhard
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Ramza Berzhanova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Togzhan Mukasheva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Tim Urich
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Annett Mikolasch
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
| |
Collapse
|
2
|
Das S, Rao KVB. A comprehensive review of biosurfactant production and its uses in the pharmaceutical industry. Arch Microbiol 2024; 206:60. [PMID: 38197951 DOI: 10.1007/s00203-023-03786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Biosurfactants are naturally occurring, surface-active chemicals generated by microorganisms and have attracted interest recently because of their numerous industrial uses. Compared to their chemical equivalents, they exhibit qualities that include lower toxic levels, increased biodegradable properties, and unique physiochemical properties. Due to these traits, biosurfactants have become attractive substitutes for synthetic surfactants in the pharmaceutical industry. In-depth research has been done in the last few decades, demonstrating their vast use in various industries. This review article includes a thorough description of the various types of biosurfactants and their production processes. The production process discussed here is from oil-contaminated waste, agro-industrial waste, dairy, and sugar industry waste, and also how biosurfactants can be produced from animal fat. Various purification methods such as ultrafiltration, liquid-liquid extraction, acid precipitation, foam fraction, and adsorption are required to acquire a purified product, which is necessary in the pharmaceutical industry, are also discussed here. Alternative ways for large-scale production of biosurfactants using different statistical experimental designs such as CCD, ANN, and RSM are described here. Several uses of biosurfactants, including drug delivery systems, antibacterial and antifungal agents, wound healing, and cancer therapy, are discussed. Additionally, in this review, the future challenges and aspects of biosurfactant utilization in the pharmaceutical industry and how to overcome them are also discussed.
Collapse
Affiliation(s)
- Sriya Das
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632-014, India
| | - K V Bhaskara Rao
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632-014, India.
| |
Collapse
|
3
|
Pardhi DS, Panchal RR, Raval VH, Joshi RG, Poczai P, Almalki WH, Rajput KN. Microbial surfactants: A journey from fundamentals to recent advances. Front Microbiol 2022; 13:982603. [PMID: 35992692 PMCID: PMC9386247 DOI: 10.3389/fmicb.2022.982603] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial surfactants are amphiphilic surface-active substances aid to reduce surface and interfacial tensions by accumulating between two fluid phases. They can be generically classified as low or high molecular weight biosurfactants based on their molecular weight, whilst overall chemical makeup determines whether they are neutral or anionic molecules. They demonstrate a variety of fundamental characteristics, including the lowering of surface tension, emulsification, adsorption, micelle formation, etc. Microbial genera like Bacillus spp., Pseudomonas spp., Candida spp., and Pseudozyma spp. are studied extensively for their production. The type of biosurfactant produced is reliant on the substrate utilized and the pathway pursued by the generating microorganisms. Some advantages of biosurfactants over synthetic surfactants comprise biodegradability, low toxicity, bioavailability, specificity of action, structural diversity, and effectiveness in harsh environments. Biosurfactants are physiologically crucial molecules for producing microorganisms which help the cells to grasp substrates in adverse conditions and also have antimicrobial, anti-adhesive, and antioxidant properties. Biosurfactants are in high demand as a potential product in industries like petroleum, cosmetics, detergents, agriculture, medicine, and food due to their beneficial properties. Biosurfactants are the significant natural biodegradable substances employed to replace the chemical surfactants on a global scale in order to make a cleaner and more sustainable environment.
Collapse
Affiliation(s)
- Dimple S. Pardhi
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakeshkumar R. Panchal
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Vikram H. Raval
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rushikesh G. Joshi
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Waleed H. Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Kiransinh N. Rajput
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
4
|
Sałek K, Euston SR, Janek T. Phase Behaviour, Functionality, and Physicochemical Characteristics of Glycolipid Surfactants of Microbial Origin. Front Bioeng Biotechnol 2022; 10:816613. [PMID: 35155390 PMCID: PMC8830654 DOI: 10.3389/fbioe.2022.816613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
Growing demand for biosurfactants as environmentally friendly counterparts of chemically derived surfactants enhances the extensive search for surface-active compounds of biological (microbial) origin. The understanding of the physicochemical properties of biosurfactants such as surface tension reduction, dispersion, emulsifying, foaming or micelle formation is essential for the successful application of biosurfactants in many branches of industry. Glycolipids, which belong to the class of low molecular weight surfactants are currently gaining a lot of interest for industrial applications. For this reason, we focus mainly on this class of biosurfactants with particular emphasis on rhamnolipids and sophorolipids, the most studied of the glycolipids.
Collapse
Affiliation(s)
- Karina Sałek
- Institute for Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, United Kingdom
- *Correspondence: Karina Sałek,
| | - Stephen R. Euston
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Rocha PM, Dos Santos Mendes AC, de Oliveira Júnior SD, de Araújo Padilha CE, de Sá Leitão ALO, da Costa Nogueira C, de Macedo GR, Dos Santos ES. Kinetic study and characterization of surfactin production by Bacillus subtilis UFPEDA 438 using sugarcane molasses as carbon source. Prep Biochem Biotechnol 2020; 51:300-308. [PMID: 32914662 DOI: 10.1080/10826068.2020.1815055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study evaluated the surfactin production by Bacillus subtilis UFPEDA 438 using sugarcane molasses as a substrate. The effects of the cultivation conditions (temperature, agitation and aeration ratio) on the biosurfactant production and kinetic parameters were investigated. Characteristics of the biosurfactant were obtained after analyses of the emulsification index (EI) and critical micellar concentration (CMC) of the fermentation broth. The results showed that in relation to the product its formation kinetics is strongly affected by operational conditions. It was also observed that surfactin production can be partially dependent or fully independent on microbial growth. The maximum values of surfactin concentration (199.45 ± 0.13 mg/L) and productivity (8,187 mg/L.h) were obtained in the culture under cultivation time of 24 h, temperature of 36 °C, agitation of 100 rpm and aeration ratio of 0.4. Under optimal conditions, the fermentation broth achieved good emulsification capacity (EI >40%) and CMC value of 20.73 mg/L. The results revealed that Bacillus subtilis UFPEDA 438 is a good producer of biosurfactant and that sugarcane molasses is a viable substrate for the production of surfactin.
Collapse
Affiliation(s)
- Patrícia Maria Rocha
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Ana Carmen Dos Santos Mendes
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Sérgio Dantas de Oliveira Júnior
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Carlos Eduardo de Araújo Padilha
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Ana Laura Oliveira de Sá Leitão
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Cleitiane da Costa Nogueira
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Gorete Ribeiro de Macedo
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Everaldo Silvino Dos Santos
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
6
|
Bioconversion of agricultural waste hydrolysate from lignocellulolytic mold into biosurfactant by Achromobacter sp. BP(1)5. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101534] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Troha K, Buchon N. Methods for the study of innate immunity in Drosophila melanogaster. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e344. [PMID: 30993906 DOI: 10.1002/wdev.344] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
From flies to humans, many components of the innate immune system have been conserved during metazoan evolution. This foundational observation has allowed us to develop Drosophila melanogaster, the fruit fly, into a powerful model to study innate immunity in animals. Thanks to an ever-growing arsenal of genetic tools, an easily manipulated genome, and its winning disposition, Drosophila is now employed to study not only basic molecular mechanisms of pathogen recognition and immune signaling, but also the nature of physiological responses activated in the host by microbial challenge and how dysregulation of these processes contributes to disease. Here, we present a collection of methods and protocols to challenge the fly with an assortment of microbes, both systemically and orally, and assess its humoral, cellular, and epithelial response to infection. Our review covers techniques for measuring the reaction to microbial infection both qualitatively and quantitatively. Specifically, we describe survival, bacterial load, BLUD (a measure of disease tolerance), phagocytosis, melanization, clotting, and ROS production assays, as well as efficient protocols to collect hemolymph and measure immune gene expression. We also offer an updated catalog of online resources and a collection of popular reporter lines and mutants to facilitate research efforts. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
Collapse
Affiliation(s)
- Katia Troha
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York
| | - Nicolas Buchon
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York
| |
Collapse
|
8
|
Abstract
Actinobacteria is a group of diverse bacteria. Most species in this class of bacteria are filamentous aerobes found in soil, including the genus Streptomyces perhaps best known for their fascinating capabilities of producing antibiotics. These bacteria typically have a Gram-positive cell envelope, comprised of a plasma membrane and a thick peptidoglycan layer. However, there is a notable exception of the Corynebacteriales order, which has evolved a unique type of outer membrane likely as a consequence of convergent evolution. In this chapter, we will focus on the unique cell envelope of this order. This cell envelope features the peptidoglycan layer that is covalently modified by an additional layer of arabinogalactan . Furthermore, the arabinogalactan layer provides the platform for the covalent attachment of mycolic acids , some of the longest natural fatty acids that can contain ~100 carbon atoms per molecule. Mycolic acids are thought to be the main component of the outer membrane, which is composed of many additional lipids including trehalose dimycolate, also known as the cord factor. Importantly, a subset of bacteria in the Corynebacteriales order are pathogens of human and domestic animals, including Mycobacterium tuberculosis. The surface coat of these pathogens are the first point of contact with the host immune system, and we now know a number of host receptors specific to molecular patterns exposed on the pathogen's surface, highlighting the importance of understanding how the cell envelope of Actinobacteria is structured and constructed. This chapter describes the main structural and biosynthetic features of major components found in the actinobacterial cell envelopes and highlights the key differences between them.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
9
|
Whole-Genome Sequence of the Soil Bacterium Micrococcus sp. KBS0714. GENOME ANNOUNCEMENTS 2017; 5:5/32/e00697-17. [PMID: 28798170 PMCID: PMC5552979 DOI: 10.1128/genomea.00697-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present here a draft genome assembly of Micrococcus sp. KBS0714, which was isolated from agricultural soil. The genome provides insight into the strategies that Micrococcus spp. use to contend with environmental stressors such as desiccation and starvation in environmental and host-associated ecosystems.
Collapse
|
10
|
Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Choi D, Chang YC. Isolation and characterization of a biosurfactant-producing heavy metal resistant Rahnella sp. RM isolated from chromium-contaminated soil. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0652-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Pontifactin, a new lipopeptide biosurfactant produced by a marine Pontibacter korlensis strain SBK-47: Purification, characterization and its biological evaluation. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.09.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Paulino BN, Pessôa MG, Mano MCR, Molina G, Neri-Numa IA, Pastore GM. Current status in biotechnological production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol 2016; 100:10265-10293. [PMID: 27844141 DOI: 10.1007/s00253-016-7980-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 01/20/2023]
Abstract
Biosurfactants are natural compounds with surface activity and emulsifying properties produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. Glycolipids are promising biosurfactants, due to low toxicity, biodegradability, and chemical stability in different conditions and also because they have many biological activities, allowing wide applications in different fields. In this review, we addressed general information about families of glycolipids, rhamnolipids, sophorolipids, mannosylerythritol lipids, and trehalose lipids, describing their chemical and surface characteristics, recent studies using alternative substrates, and new strategies to improve of production, beyond their specificities. We focus in providing recent developments and trends in biotechnological process and medical and industrial applications.
Collapse
Affiliation(s)
- Bruno Nicolau Paulino
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil.
| | - Marina Gabriel Pessôa
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| | - Mario Cezar Rodrigues Mano
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| | - Gustavo Molina
- Institute of Science and Technology, Food Engineering, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Iramaia Angélica Neri-Numa
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| |
Collapse
|
13
|
Hanafy RA, Couger MB, Baker K, Murphy C, O'Kane SD, Budd C, French DP, Hoff WD, Youssef N. Draft genome sequence of Micrococcus luteus strain O'Kane implicates metabolic versatility and the potential to degrade polyhydroxybutyrates. GENOMICS DATA 2016; 9:148-53. [PMID: 27583205 PMCID: PMC4993860 DOI: 10.1016/j.gdata.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/08/2016] [Indexed: 01/03/2023]
Abstract
Micrococcus luteus is a predominant member of skin microbiome. We here report on the genomic analysis of Micrococcus luteus strain O'Kane that was isolated from an elevator. The partial genome assembly of Micrococcus luteus strain O'Kane is 2.5 Mb with 2256 protein-coding genes and 62 RNA genes. Genomic analysis revealed metabolic versatility with genes involved in the metabolism and transport of glucose, galactose, fructose, mannose, alanine, aspartate, asparagine, glutamate, glutamine, glycine, serine, cysteine, methionine, arginine, proline, histidine, phenylalanine, and fatty acids. Genomic comparison to other M. luteus representatives identified the potential to degrade polyhydroxybutyrates, as well as several antibiotic resistance genes absent from other genomes.
Collapse
Affiliation(s)
- Radwa A Hanafy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - M B Couger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Kristina Baker
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Chelsea Murphy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Shannon D O'Kane
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Connie Budd
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Donald P French
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Noha Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
14
|
Yeast diversity in a traditional French cheese “Tomme d'orchies” reveals infrequent and frequent species with associated benefits. Food Microbiol 2015; 52:177-84. [DOI: 10.1016/j.fm.2015.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022]
|
15
|
Inès M, Dhouha G. Glycolipid biosurfactants: Potential related biomedical and biotechnological applications. Carbohydr Res 2015; 416:59-69. [PMID: 26359535 DOI: 10.1016/j.carres.2015.07.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 02/02/2023]
Abstract
Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively. Rhamnolipids, trehalolipids, mannosylerythritol-lipids and cellobiose lipids are among the most popular glycolipids. Moreover, their ability to form pores and destabilize biological membrane permits their use in biomedicine as antibacterial, antifungal and hemolytic agents. Their antiviral and antitumor effects enable their use in pharmaceutic as therapeutic agents. Also, glycolipids can inhibit the bioadhesion of pathogenic bacteria enabling their use as anti-adhesive agents and for disruption of biofilm formation and can be used in cosmetic industry. Moreover, they have great potential application in industry as detergents, wetting agents and for flotation. Furthermore, glycolipids can act at the surface and can modulate enzyme activity permitting the enhancement or the inhibition of the activity of certain enzymes.
Collapse
Affiliation(s)
- Mnif Inès
- Higher Institute of Biotechnology, Tunisia; Unit Enzymes and Bioconversion, National School of Engineers, Tunisia.
| | - Ghribi Dhouha
- Higher Institute of Biotechnology, Tunisia; Unit Enzymes and Bioconversion, National School of Engineers, Tunisia
| |
Collapse
|
16
|
Varvaresou A, Iakovou K. Biosurfactants in cosmetics and biopharmaceuticals. Lett Appl Microbiol 2015; 61:214-23. [PMID: 25970073 DOI: 10.1111/lam.12440] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 11/28/2022]
Abstract
Biosurfactants are surface-active biomolecules that are produced by various micro-organisms. They show unique properties i.e. lower toxicity, higher biodegradability and environmental compatibility compared to their chemical counterparts. Glycolipids and lipopeptides have prompted application in biotechnology and cosmetics due to their multi-functional profile i.e. detergency, emulsifying, foaming and skin hydrating properties. Additionally, some of them can be served as antimicrobials. In this study the current status of research and development on rhamnolipids, sophorolipids, mannosyloerythritol lipids, trehalipids, xylolipids and lipopeptides particularly their commercial application in cosmetics and biopharmaceuticals, is described.
Collapse
Affiliation(s)
- A Varvaresou
- Laboratory of Cosmetology, Department of Aesthetics and Cosmetology, Technological Educational Institution of Athens, Athens, Greece
| | - K Iakovou
- Department of Drugs, Ministry of Health, Athens, Greece
| |
Collapse
|
17
|
Cai Q, Zhang B, Chen B, Song X, Zhu Z, Cao T. Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:284. [PMID: 25903403 DOI: 10.1007/s10661-015-4490-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
From offshore oil and gas platforms in North Atlantic Canada, crude oil, formation water, drilling mud, treated produced water and seawater samples were collected for screening potential biosurfactant producers. In total, 59 biosurfactant producers belong to 4 genera, namely, Bacillus, Rhodococcus, Halomonas, and Pseudomonas were identified and characterized. Phytogenetic trees based on 16S ribosomal deoxyribonucleic acid (16S rDNA) were constructed with isolated strains plus their closely related strains and isolated strains with biosurfactant producers in the literature, respectively. The distributions of the isolates were site and medium specific. The richness, diversity, and evenness of biosurfactant producer communities in oil and gas platform samples have been analyzed. Diverse isolates were found with featured properties such as effective reduction of surface tension, producing biosurfactants at high rate and stabilization of water-in-oil or oil-in-water emulsion. The producers and their corresponding biosurfactants had promising potential in applications such as offshore oil spill control, enhancing oil recovery and soil washing treatment of petroleum hydrocarbon-contaminated sites.
Collapse
Affiliation(s)
- Qinhong Cai
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Kügler JH, Le Roes-Hill M, Syldatk C, Hausmann R. Surfactants tailored by the class Actinobacteria. Front Microbiol 2015; 6:212. [PMID: 25852670 PMCID: PMC4365757 DOI: 10.3389/fmicb.2015.00212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.
Collapse
Affiliation(s)
- Johannes H. Kügler
- Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Marilize Le Roes-Hill
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of TechnologyBellville, South Africa
| | - Christoph Syldatk
- Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Rudolf Hausmann
- Bioprocess Engineering, Institute of Food Science and Biotechnology, University of HohenheimStuttgart, Germany
| |
Collapse
|
19
|
High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications. World J Microbiol Biotechnol 2015; 31:691-706. [PMID: 25739564 DOI: 10.1007/s11274-015-1830-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/22/2015] [Indexed: 12/31/2022]
Abstract
High molecular weight bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins, or complex mixtures of these biopolymers, produced by a wide variety of microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively and/or emulsify hydrophobic compounds. Emulsan, fatty acids, phospholipids, neutral lipids, exopolysaccharides, vesicles and fimbriae are among the most popular high molecular weight bioemulsifiers. They have great physic-chemical properties like tolerance to extreme conditions of pH, temperature and salinity, low toxicity and biodegradability. Owing their emulsion forming and breaking capacities, solubilization, mobilization and dispersion activities and their viscosity reduction activity; they possess great environmental application as enhancer of hydrocarbon biodegradation and for microbial enhanced oil recovery. Besides, they are applied in biomedical fields for their antimicrobial and anti-adhesive activities and involvement in immune responses.
Collapse
|
20
|
Putri M, Hertadi R. Effect of Glycerol as Carbon Source for Biosurfactant Production by Halophilic Bacteria Pseudomonas Stutzeri BK-AB12. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proche.2015.12.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Dellagnezze BM, de Sousa GV, Martins LL, Domingos DF, Limache EEG, de Vasconcellos SP, da Cruz GF, de Oliveira VM. Bioremediation potential of microorganisms derived from petroleum reservoirs. MARINE POLLUTION BULLETIN 2014; 89:191-200. [PMID: 25457810 DOI: 10.1016/j.marpolbul.2014.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/03/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21 days. Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21 days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21 days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21 days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications.
Collapse
Affiliation(s)
- Bruna Martins Dellagnezze
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, CEP 13148-218, Paulinia, Brazil
| | - Gabriel Vasconcelos de Sousa
- Laboratory of Engineering and Petroleum Exploration, Darcy Ribeiro North Fluminense State University - LENEP/UENF, POB 119562, 27910-970 Macaé, RJ, Brazil
| | - Laercio Lopes Martins
- Laboratory of Engineering and Petroleum Exploration, Darcy Ribeiro North Fluminense State University - LENEP/UENF, POB 119562, 27910-970 Macaé, RJ, Brazil
| | - Daniela Ferreira Domingos
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, CEP 13148-218, Paulinia, Brazil
| | - Elmer E G Limache
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, CEP 13148-218, Paulinia, Brazil
| | | | - Georgiana Feitosa da Cruz
- Laboratory of Engineering and Petroleum Exploration, Darcy Ribeiro North Fluminense State University - LENEP/UENF, POB 119562, 27910-970 Macaé, RJ, Brazil
| | - Valéria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, CEP 13148-218, Paulinia, Brazil.
| |
Collapse
|
22
|
Cortés-Sánchez ADJ, Hernández-Sánchez H, Jaramillo-Flores ME. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res 2012; 168:22-32. [PMID: 22959834 DOI: 10.1016/j.micres.2012.07.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 06/01/2012] [Accepted: 07/07/2012] [Indexed: 02/01/2023]
Abstract
Several biological processes in prokaryotic and eukaryotic organisms require the presence of glycolipids (biosurfactants), compounds with both hydrophilic and hydrophobic groups in their structure. They constitute the backbone of different metabolic functions and biological structures such as cell membranes. Besides being structural components, glycolipids show surface activity in the interfaces and are mainly produced by microorganisms. Interest in biosurfactants has increased considerably in recent times due to their applications in the environmental, oil, food, and pharmaceutical industries, since they have unique properties such as low toxicity, high biodegradability, environmentally friendly, foaming capacity, high selectivity and specificity at extreme temperatures, pH and salinity, as well as biological activity. All of these properties are considered advantages over other chemical surfactants, and therefore glycolipids are considered a good alternative, given the current interest on sustainable development. The present work shows a general view of bio-surfactants of microbial origin, particularly of glycolipids, referring to several studies on their biological activity that have revealed their great potential in the medical-biological field, discovering interesting possibilities for their therapeutic application in the near future.
Collapse
Affiliation(s)
- Alejandro de Jesús Cortés-Sánchez
- Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas-IPN, Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, CP 11340, México, D.F., Mexico
| | | | | |
Collapse
|
23
|
Zheng C, Li Z, Su J, Zhang R, Liu C, Zhao M. Characterization and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1. J Appl Microbiol 2012; 113:44-51. [PMID: 22515599 DOI: 10.1111/j.1365-2672.2012.05313.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Biosurfactants and bioemulsifiers commonly have the advantages of biodegradability, low toxicity, selectivity and biocompatibility over chemically synthesized surfactants. The goal of the study is to present a novel bioemulsifier with great application potential. METHODS AND RESULTS Aeribacillus pallidus YM-1, isolated from crude oil contaminated soil, was found to produce a novel high molecular bioemulsifier with an emulsification index of 60 ± 1% without remarkable surface tension reduction (45·7 ± 0·1 mN m(-1) ). The number-average molecular weight was determined as 526 369 Da by gel permeation chromatography analysis. Bioemulsifier was subjected to FT-IR and a complex of carbohydrates (41·1%), lipids (47·6%) and proteins (11·3%) was determined. CONCLUSIONS The bioemulsifier of A. pallidus YM-1 was isolated from the glucose-based culture medium and characterized with the help of chemical analytical techniques. The bioemulsifier exhibited a promising emulsifying property for biotechnology application potential in bioremediation and microbial enhanced oil recovery. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of the bioemulsifier production by A. pallidus. The potential emulsifying activity of the bioemulsifier in the present study may be explored in various biotechnological and industrial applications.
Collapse
Affiliation(s)
- C Zheng
- Petroleum Exploration & Production Research Institute, SINOPEC, Xueyuan Road, Haidian District, Beijing, China.
| | | | | | | | | | | |
Collapse
|
24
|
Makkar RS, Cameotra SS, Banat IM. Advances in utilization of renewable substrates for biosurfactant production. AMB Express 2011; 1:5. [PMID: 21906330 PMCID: PMC3159906 DOI: 10.1186/2191-0855-1-5] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/28/2011] [Indexed: 11/10/2022] Open
Abstract
Biosurfactants are amphiphilic molecules that have both hydrophilic and hydrophobic moieties which partition preferentially at the interfaces such as liquid/liquid, gas/liquid or solid/liquid interfaces. Such characteristics enable emulsifying, foaming, detergency and dispersing properties. Their low toxicity and environmental friendly nature and the wide range of potential industrial applications in bioremediation, health care, oil and food processing industries makes them a highly sought after group of chemical compounds. Interest in them has also been encouraged because of the potential advantages they offer over their synthetic counterparts in many fields spanning environmental, food, biomedical, petrochemical and other industrial applications. Their large scale production and application however are currently restricted by the high cost of production and by the limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and latest advances in the search for cost effective renewable agro industrial alternative substrates for their production.
Collapse
Affiliation(s)
| | - Swaranjit S Cameotra
- Scientist F, Fellow AMI, FNABS, NESA Environmentalist, Member WFCC Task Groups, Institute of Microbial Technology, Sector 39A, Chandigarh-160036, India
| | - Ibrahim M Banat
- Professor Ibrahim M. Banat BSc PhD CBiol FIBiol, School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| |
Collapse
|
25
|
|
26
|
de Gusmão CAB, Rufino RD, Sarubbo LA. Laboratory production and characterization of a new biosurfactant from Candida glabrata UCP1002 cultivated in vegetable fat waste applied to the removal of hydrophobic contaminant. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0346-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|