1
|
Mahanta DK, Komal J, Samal I, Bhoi TK, Dubey VK, Pradhan K, Nekkanti A, Gouda MNR, Saini V, Negi N, Bhateja S, Jat HK, Jeengar D. Nutritional aspects and dietary benefits of "Silkworms": Current scenario and future outlook. Front Nutr 2023; 10:1121508. [PMID: 36742434 PMCID: PMC9892554 DOI: 10.3389/fnut.2023.1121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
In the current scenario, it is estimated that by 2050, there will be an additional 2.5 billion people and a 70% increase in food demand. Crop yields are not increasing fast enough to support global needs, and world agriculture is facing several serious challenges. Therefore, insects can be a nutritious alternative to meet the ever-increasing food demand in the present and future. The majority of insect consumption occurs in developing countries, with approximately 1,900 insect species consumed worldwide. Food and feed derived from them are of high quality, have a high feed conversion ratio and emit a low level of greenhouse gases. Among insects silkworms are beneficial to humans, not only because of their high nutritional value, but also because of their several pharmacological properties. Silkworm eggs, larvae, and pupae contains high amount of proteins, oils, minerals, vitamins, and several other beneficial components which are nutritious as well as have positive effect on human health. Studies have shown that silkworm pupae protect the liver, enhance immunity, inhibit apoptosis, inhibit cancer, inhibit tumor growth, inhibit microbial growth, regulate blood glucose and blood lipids, and lower blood pressure. This review paper summerized the nutritional value of different life stages of silkworm, nutritional comparison of silkworm with the major human foods, and the effects of silkworm consumption on human health, thus ittargets to generate interest toward in sericulture and improve human health by using silkworm as a nutritious food and attain sustainability in food and nutritional security.
Collapse
Affiliation(s)
- Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ipsita Samal
- Department of Entomology, Sri Sri University, Cuttack, Odisha, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE – Arid Forest Research Institute (AFRI), Jodhpur, Rajasthan, India
| | - Vinod Kumar Dubey
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Kiranamaya Pradhan
- Department of Entomology, University of Agricultural Sciences, Dharwad, India
| | - Aarthi Nekkanti
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - M. N. Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - Varun Saini
- Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Nikita Negi
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Sheenam Bhateja
- Department of Entomology, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Hansa Kumari Jat
- Department of Entomology, Rajasthan Agricultural Research Institute, Durgapur, Jaipur, Rajasthan, India
| | - Deepika Jeengar
- Department of Entomology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
2
|
Silkworm Pupae: A Functional Food with Health Benefits for Humans. Foods 2022; 11:foods11111594. [PMID: 35681343 PMCID: PMC9180533 DOI: 10.3390/foods11111594] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Silkworm pupae are insects that are beneficial to human health, not only for their high nutritional value but, more importantly, for the variety of pharmacological functions they can perform when consumed. Currently, there is a lot of interest in the pharmaceutical applications of silkworm pupae. In recent years, the biological functions of domestic silkworm pupae have gradually been identified and confirmed, especially for their beneficial effects on human health. Studies have found that silkworm pupae have positive effects on liver protection, immune enhancement, antiapoptosis, antitumour, antibacterial, regulation of blood glucose and blood lipids, and lowering of blood pressure. However, the pharmacological mechanisms and systemic safety of silkworm pupae have not been systematically evaluated. In this paper, the nutritional composition of the pupae of the domestic silkworm is first summarised. The pharmacological functions of silkworm pupae and their components are then classified, and their mechanisms of occurrence are described. In addition, we provide a preliminary evaluation of the safety of silkworm pupae, analyse their application prospects, and suggest future directions for further pharmacological function studies. The aim is to generate interest in the promotion of human health through the use of silkworm pupae.
Collapse
|
3
|
Sadat A, Biswas T, Cardoso MH, Mondal R, Ghosh A, Dam P, Nesa J, Chakraborty J, Bhattacharjya D, Franco OL, Gangopadhyay D, Mandal AK. Silkworm pupae as a future food with nutritional and medicinal benefits. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Ma Y, Wu C, Liu J, Liu Y, Lv J, Sun Z, Wang D, Jiang C, Sheng Q, You Z, Nie Z. The stability and antiapoptotic activity of Bm30K-3 can be improved by lysine acetylation in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21649. [PMID: 31777104 DOI: 10.1002/arch.21649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Acetylation is an important, highly conserved, and reversible post-translational modification of proteins. Previously, we showed by nano-HPLC/MS/MS that many nutrient storage proteins in the silkworm are acetylated. Among these proteins, most of the known 30K proteins were shown to be acetylated, including 23 acetylated 30K proteins containing 49 acetylated sites (Kac), indicating the importance of the acetylation of 30K proteins in silkworm. In this study, Bm30K-3, a 30K protein containing three Kac sites, was further assessed in functional studies of its acetylation. Increasing the level of Bm30K-3 acetylation by adding the deacetylase inhibitor trichostatin A (TSA) increased the levels of this protein and further inhibited cellular apoptosis induced by H2 O2 . In contrast, decreasing the level of acetylation by adding the acetylase inhibitor C646 could reduce the level of Bm30K-3 and increase H2 O2 -induced apoptosis. Subsequently, BmN cells were treated with CHX and MG132, and increasing the acetylation level using TSA was shown to inhibit protein degradation and improve the stability of Bm30K-3. Furthermore, the acetylation of Bm30K-3 could compete with its ability to be ubiquitinated, suggesting that acetylation could inhibit the ubiquitin-mediated proteasome degradation pathway, improving the stability and accumulation of proteins in cells. These results further indicate that acetylation might regulate nutrition storage and utilization in Bombyx mori, which requires further study.
Collapse
Affiliation(s)
- Yafei Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chengcheng Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiahan Liu
- School of Forestry and Biotechnology, Zhejiang A & F University, Linan, China
| | - Yue Liu
- Zhejiang Economic & Trade Polytechnic, Hangzhou, China
| | - Jiao Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zihan Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
5
|
Henry MN, MacDonald MA, Orellana CA, Gray PP, Gillard M, Baker K, Nielsen LK, Marcellin E, Mahler S, Martínez VS. Attenuating apoptosis in Chinese hamster ovary cells for improved biopharmaceutical production. Biotechnol Bioeng 2020; 117:1187-1203. [DOI: 10.1002/bit.27269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Matthew N. Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Michael A. MacDonald
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| | - Camila A. Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Peter P. Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Kym Baker
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Patheon Biologics—A Part of Thermo Fisher Scientific Brisbane Queensland Australia
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Metabolomics Australia The University of Queensland Brisbane Queensland Australia
- The Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kgs. Lyngby Denmark
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Metabolomics Australia The University of Queensland Brisbane Queensland Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| | - Verónica S. Martínez
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
6
|
Enhanced single-cell viability using 30Kc6 for efficient expansion of human induced pluripotent stem cells. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Protective effects of silkworm hemolymph extract and its fractions on UV-induced photoaging. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0588-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Identification of regulatory motifs in the CHO genome for stable monoclonal antibody production. Cytotechnology 2016; 69:451-460. [PMID: 27544513 DOI: 10.1007/s10616-016-0017-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023] Open
Abstract
Chinese hamster ovary (CHO) cell lines are widely used for therapeutic protein production. When a transgene is integrated into the genome of a CHO cell, the expression level is highly dependent on the site of integration because of positional effects such as gene silencing. To overcome negative positional effects and establish stable CHO cell lines with high productivity, several regulatory DNA elements are used in vector construction. Previously, we established the CHO DR1000L-4N cell line, a stable and high copy number Dhfr gene-amplified cell line. It was hypothesized that the chromosomal location of the exogenous gene-amplified region in the CHO DR1000L-4N genome contains regulatory motifs for stable protein production. Therefore, we isolated DNA regulatory motifs from the CHO DR1000L-4N cell line and determined whether these motifs act as an insulator. Our results suggest that stable expression of a transgene can be promoted by the CHO genome sequence, and it would be a powerful tool for therapeutic protein manufacturing.
Collapse
|
9
|
Park HH, Choi J, Lee HJ, Ryu J, Park JH, Rhee WJ, Park TH. Enhancement of human erythropoietin production in Chinese hamster ovary cells through supplementation of 30Kc19-30Kc6 fusion protein. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Park HH, Sohn Y, Yeo JW, Park JH, Lee HJ, Ryu J, Rhee WJ, Park TH. Dimerization of 30Kc19 protein in the presence of amphiphilic moiety and importance of Cys-57 during cell penetration. Biotechnol J 2014; 9:1582-93. [PMID: 25143246 PMCID: PMC4283735 DOI: 10.1002/biot.201400253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/29/2014] [Indexed: 12/19/2022]
Abstract
Recently, the recombinant 30Kc19 protein, originating from silkworm hemolymph of Bombyx mori has attracted attention due to its cell-penetrating property and potential application as a protein delivery system. However, this observation of penetration across cell membrane has raised questions concerning the interaction of the protein-lipid bilayer. Here, we report a dimerization propensity of the 30Kc19 protein in the presence of amphiphilic moieties; sodium dodecyl sulfate (SDS) or phospholipid. Native PAGE showed that the 30Kc19 monomer formed a dimer when SDS or phospholipid was present. In the glutathione-S-transferase (GST) pull-down assay, supplementation of the 30Kc19 protein to mammalian cell culture medium showed dimerization and penetration; due to phospholipids at the cell membrane, the main components of the lipid bilayer. Mutagenesis was performed, and penetration was observed by 30Kc19 C76A and not 30Kc19 C57A, which meant that the presence of cysteine at position 57 (Cys-57) is involved in dimerization of the 30Kc19 at the cell membrane during penetration. We anticipate application of the native 30Kc19 protein with high cell-penetrating efficiency for delivery of cargos to various cell types. The intracellular cargo delivery using the 30Kc19 protein is a non-virus derived (e.g. TAT) delivery method, which can open up new approaches for the delivery of therapeutics in bioindustries, such as pharma- and cosmeceuticals.
Collapse
Affiliation(s)
- Hee Ho Park
- The School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Identification and characterization of a novel cell-penetrating peptide of 30Kc19 protein derived from Bombyx mori. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Protective effect of the silkworm protein 30Kc6 on human vascular endothelial cells damaged by oxidized low density lipoprotein (Ox-LDL). PLoS One 2013; 8:e68746. [PMID: 23840859 PMCID: PMC3695901 DOI: 10.1371/journal.pone.0068746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 05/31/2013] [Indexed: 11/19/2022] Open
Abstract
Although the 30K family proteins are important anti-apoptotic molecules in silkworm hemolymph, the underlying mechanism remains to be investigated. This is especially the case in human vascular endothelial cells (HUVECs). In this study, a 30K protein, 30Kc6, was successfully expressed and purified using the Bac-to-Bac baculovirus expression system in silkworm cells. Furthermore, the 30Kc6 expressed in Escherichia coli was used to generate a polyclonal antibody. Western blot analysis revealed that the antibody could react specifically with the purified 30Kc6 expressed in silkworm cells. The In vitro cell apoptosis model of HUVEC that was induced by oxidized low density lipoprotein (Ox-LDL) and in vivo atherosclerosis rabbit model were constructed and were employed to analyze the protective effects of the silkworm protein 30Kc6 on these models. The results demonstrated that the silkworm protein 30Kc6 significantly enhanced the cell viability in HUVEC cells treated with Ox-LDL, decreased the degree of DNA fragmentation and markedly reduced the level of 8-isoprostane. This could be indicative of the silkworm protein 30Kc6 antagonizing the Ox-LDL-induced cell apoptosis by inhibiting the intracellular reactive oxygen species (ROS) generation. Furthermore, Ox-LDL activated the cell mitogen activated protein kinases (MAPK), especially JNK and p38. As demonstrated with Western analysis, 30Kc6 inhibited Ox-LDL-induced cell apoptosis in HUVEC cells by preventing the MAPK signaling pathways. In vivo data have demonstrated that oral feeding of the silkworm protein 30Kc6 dramatically improved the conditions of the atherosclerotic rabbits by decreasing serum levels of total triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). Furthermore, 30Kc6 alleviated the extent of lesions in aorta and liver in the atherosclerotic rabbits. These data are not only helpful in understanding the anti-apoptotic mechanism of the 30K family proteins, but also provide important information on prevention and treatment of human cardiovascular diseases.
Collapse
|
13
|
Two Novel 30K Proteins Overexpressed in Baculovirus System and Their Antiapoptotic Effect in Insect and Mammalian Cells. Int J Genomics 2013; 2013:323592. [PMID: 23862133 PMCID: PMC3686079 DOI: 10.1155/2013/323592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 11/17/2022] Open
Abstract
The 30K family of proteins is important in energy metabolism and may play a role in inhibiting cellular apoptosis in silkworms (Bombyx mori). Several 30K-family proteins have been identified. In this study, two new silkworm genes, referred to as Slp (NM 001126256) and Lsp-t (NM 001043443), were analyzed by a bioinformatics approach according to the sequences of 30K proteins previously reported in the silkworm. Both Slp and Lsp-t shared more than 41% amino acid sequence homology with the reported 30K proteins and displayed a conserved domain consistent with that of lipoprotein-11. Additionally, the cDNA sequences of both Slp and Lsp-t were obtained from the fat bodies of silkworm larvae by reverse transcription polymerase chain reaction. Both genes were expressed in BmN cells using the Bac-to-Bac system. Purified Slp and Lsp-t were added to cultured BmN and human umbilical vein endothelial cells (HUVEC) that were treated with H2O2. Both Slp and Lsp-t significantly enhanced the viability and suppressed DNA fragmentation in H2O2 treated BmN and HUVEC cells. This study suggested that Slp and Lsp-t exhibit similar biological activities as their known 30K-protein counterparts and mediate an inhibitory effect against H2O2-induced apoptosis.
Collapse
|
14
|
Arthuso FS, Bartolini P, Soares CRJ. Laboratory production of human prolactin from CHO cells adapted to serum-free suspension culture. Appl Biochem Biotechnol 2012; 167:2212-24. [PMID: 22692846 DOI: 10.1007/s12010-012-9745-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 05/14/2012] [Indexed: 12/28/2022]
Abstract
Human prolactin (hPRL) is a polypeptide with 199 amino acids and a molecular mass of 23 kDa. Previously, a eukaryotic hPRL expression vector was used to transfect Chinese hamster ovary (CHO) cells: this work describes a fast and practical laboratory adaptation of these transfected cells, in ~40 days, to grow in suspension in serum-free medium. High cell densities of up to 4.0 × 10(6) cell/ml were obtained from spinner flask cultures and a stable and continuous production process was developed for at least 30 days. Two harvesting strategies were set up, 50 or 100 % of the total conditioned medium being collected daily and replaced by fresh culture medium. The volumetric productivity was 5-7 μg hPRL/ml, as determined directly in the collected medium via reversed-phase HPLC (RP-HPLC). A two-step process based on a cationic exchanger followed by size exclusion chromatography was applied to obtain purified hPRL from conditioned medium. Two hPRL isoforms, non-glycosylated and glycosylated, could also be separated by high-performance size-exclusion chromatography (HPSEC) and, when analyzed by RP-HPLC, HPSEC, Western blotting, and bioassay, were found to be comparable to the World Health Organization International Reference Reagent of hPRL. These results are useful for the practical scale-up to the pilot and industrial scale of a bioprocess based on CHO cell culture.
Collapse
Affiliation(s)
- Fernanda Santos Arthuso
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, Cidade Universitária, 05508-900 São Paulo, Brazil.
| | | | | |
Collapse
|
15
|
|
16
|
Park JY, Yamatani M, Wadano S, Takagi Y, Honda K, Omasa T, Ohtake H. Effects of palindrome structure on Dhfr amplification in Chinese hamster ovary cells. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Park JH, Park HH, Park TH. Cellular engineering for the high-level production of recombinant proteins in mammalian cell systems. KOREAN J CHEM ENG 2010. [DOI: 10.1007/s11814-010-0278-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|