1
|
Chang K, Chou R, Yu P, Zuo L, Liu Q, Zhang X, Yin C, Zhou H. Rhodium-Catalyzed Asymmetric Transfer Hydrogenation of Aryl Ketones Involving Free Phenolic Hydroxyl Group(s). Chemistry 2024; 30:e202403055. [PMID: 39308403 DOI: 10.1002/chem.202403055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Indexed: 11/01/2024]
Abstract
A straightforward asymmetric transfer hydrogenation for accessing enantiomerically enriched secondary benzyl alcohols involving free phenolic hydroxyl group(s) under mild conditions was developed. Various of optical pure aryl alcohols with a remarkable functional group compatibility were achieved with 78 %-97 % yields, 84 %->99 % ee's and up to 10 000 TON. This rhodium-catalyzed reaction could be performed in a gram-scale without loss of the efficiency. Furthermore, the synthetic utility has also been demonstrated in the asymmetric synthesis of (S)-adrenaline and (S)-phenylephrine.
Collapse
Affiliation(s)
- Kedi Chang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Ruilong Chou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Pinke Yu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Linhong Zuo
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Qixing Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Xumu Zhang
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Congcong Yin
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Haifeng Zhou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
2
|
Enantioselective synthesis of (R)-phenylephrine by Serratia marcescens BCRC10948 cells that homologously express SM_SDR. Enzyme Microb Technol 2018; 110:14-19. [PMID: 29310851 DOI: 10.1016/j.enzmictec.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/14/2017] [Accepted: 12/06/2017] [Indexed: 11/23/2022]
Abstract
A short-chain dehydrogenase/reductase from Serratia marcescens BCRC10948, SM_SDR, has been cloned and expressed in Escherichia coli for the bioconversion of 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) to (R)-phenylephrine[(R)-PE]. However, only 5.11mM (R)-PE was obtained from 10mM HPMAE after a 9h conversion in the previous report. To improve the biocatalytic efficiency, the homologous expression of the SM_SDR in S. marcescens BCRC10948 was achieved using the T5 promoter for expression. By using 2% glycerol as carbon source, we found that 8.00±0.15mM of (R)-PE with more than 99% enantiomeric excess was produced from 10mM HPMAE after 12h conversion at 30°C and pH 7.0. More importantly, by using 50mM HPMAE as the substrate, 23.78±0.84mM of (R)-PE was produced after a 12h conversion with the productivity and the conversion yield of 1.98mmol (R)-PE/lh and 47.50%, respectively. The recombinant S. marcescens cells could be recycled 6 times for the production of (R)-PE, and the bioconversion efficiency remained at 85% when compared to that at the first cycle. Our data indicated that a high conversion efficiency of HPMAE to (R)-PE could be achieved using S. marcescens BCRC10948 cells that homologously express the SM_SDR.
Collapse
|
3
|
Dai S, Li G, Zhang W, Zhang C, Song X, Huang D. Efficient Synthesis of (R)-Phenylephrine Using a Polymer-supported Corey–Bakshi–Shibata Catalyst. CHEM LETT 2017. [DOI: 10.1246/cl.170028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuangxiong Dai
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Guohua Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Wenbo Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Cuiyan Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Xiaoling Song
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Di Huang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
4
|
Enhanced bioconversion rate and released substrate inhibition in (R)-phenylephrine whole-cell bioconversion via partial acetone treatment. Enzyme Microb Technol 2015; 86:34-8. [PMID: 26992790 DOI: 10.1016/j.enzmictec.2015.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/05/2015] [Accepted: 11/16/2015] [Indexed: 11/22/2022]
Abstract
An approach was developed to enhance the efficiency for the bioconversion of 1-(3-hydroxyphenyl)-2-(methyamino)-ethanone to (R)-phenylephrine. The strain Serratia marcescens N10612, giving the benefit of 99% enantiomeric excess in (R)-PE conversion, was used. The fermentation was devised to harvest cells with high hydrophobic prodigiosin content inside the cells. Then, the partial acetone extraction was applied to remove prodigiosin from the cells. The treatment was found to increase the cells conversion rate without loss of the cells NADPH redox system. When using 50% (v/v) acetone for 5min, the processed cells can give a specific conversion rate of 16.03μmol/h/g-cells. As compared the treated cells with cells under the basal medium, the maximum reaction rate (Vmax) increased from 6.69 to 10.27 (μmol/h/g-cells), the dissociation constant (Km) decreased from 0.236 to 0.167mM and the substrate inhibition constant (KSi) increased from 0.073 to 1.521mM. The 20-fold increase in substrate inhibition constant referred to a great release from the substrate inhibition for the use of S. marcescens N10612 in the bioconversion, which would greatly benefit the bioconversion to be industrialized.
Collapse
|
5
|
Zang CZ, Kan SC, Yeh CW, Lin CC, Shieh CJ, Liu YC. Ultrasound-assisted (R)-phenylephrine whole-cell bioconversion by S. marcescens N10612. ULTRASONICS SONOCHEMISTRY 2015; 26:415-421. [PMID: 25691009 DOI: 10.1016/j.ultsonch.2015.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
The strain Serratia marcescens N10612 is used to perform the bioconversion of 1-(3-hydroxyphenyl)-2-(methyamino)-ethanone (HPMAE) to (R)-phenylephrine ((R)-PE), which is an ephedrine drug substitute. The use of an ultrasound approach is found to improve the efficiency of the (R)-PE bioconversion. The optimization of the (R)-PE bioconversion is carried out by means of statistical experiment design. The optimal conditions obtained are 1.0mM HPMAE, 18.68 g/L glucose and ultrasound power of 120 W, where the predicted specific rate of the (R)-PE bioconversion is 31.46 ± 2.22 (ìmol/h/g-cells) and the experimental specific rate is 33.27 ± 1.46 (ìmol/h/g-cells), which is 3-fold higher than for the operation under ultrasound power of 200 W (11.11 ìmol/h/g-cells) and 4.3-fold higher than for the shaking operation (7.69 ìmol/h/g-cells). The kinetics study of the bioconversion also shows that under the ultrasound operation, the optimal rate (Vmax) of the (R)-PE bioconversion increases from 7.69 to 11.11 (μmol/h/g-cells) and the substrate inhibition constant (KSi) increases from 1.063 mM for the shaking operation to 1.490 mM for ultrasound operation.
Collapse
Affiliation(s)
- Chi-Zong Zang
- Department of Chemical Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Shu-Chen Kan
- Department of Chemical Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Chiung-Wen Yeh
- Department of Chemical Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Chia-Chi Lin
- Department of Chemical Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Chwen-Jen Shieh
- Biotechnology Center, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC.
| |
Collapse
|
6
|
Characterization of a (2R,3R)-2,3-Butanediol Dehydrogenase from Rhodococcus erythropolis WZ010. Molecules 2015; 20:7156-73. [PMID: 25903366 PMCID: PMC6272300 DOI: 10.3390/molecules20047156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 11/17/2022] Open
Abstract
The gene encoding a (2R,3R)-2,3-butanediol dehydrogenase from Rhodococcus erythropolis WZ010 (ReBDH) was over-expressed in Escherichia coli and the resulting recombinant ReBDH was successfully purified by Ni-affinity chromatography. The purified ReBDH in the native form was found to exist as a monomer with a calculated subunit size of 37180, belonging to the family of the zinc-containing alcohol dehydrogenases. The enzyme was NAD(H)-specific and its optimal activity for acetoin reduction was observed at pH 6.5 and 55 °C. The optimal pH and temperature for 2,3-butanediol oxidation were pH 10 and 45 °C, respectively. The enzyme activity was inhibited by ethylenediaminetetraacetic acid (EDTA) or metal ions Al3+, Zn2+, Fe2+, Cu2+ and Ag+, while the addition of 10% (v/v) dimethyl sulfoxide (DMSO) in the reaction mixture increased the activity by 161.2%. Kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for diacetyl and NADH in comparison to those for (2R,3R)-2,3-butanediol and NAD+. The activity of acetoin reduction was 7.7 times higher than that of (2R,3R)-2,3-butanediol oxidation when ReBDH was assayed at pH 7.0, suggesting that ReBDH-catalyzed reaction in vivo might favor (2R,3R)-2,3-butanediol formation rather than (2R,3R)-2,3-butanediol oxidation. The enzyme displayed absolute stereospecificity in the reduction of diacetyl to (2R,3R)-2,3-butanediol via (R)-acetoin, demonstrating its potential application on the synthesis of (R)-chiral alcohols.
Collapse
|
7
|
Cloning, expression, and directed evolution of carbonyl reductase from Leifsonia xyli HS0904 with enhanced catalytic efficiency. Appl Microbiol Biotechnol 2014; 98:8591-601. [DOI: 10.1007/s00253-014-5770-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 01/03/2023]
|
8
|
Tokoshima D, Hanaya K, Shoji M, Sugai T. Whole-cell yeast-mediated preparation of (R)-2-chloro-1-(3-nitrophenyl)ethanol as a synthetic precursor for (R)-phenylephrine. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Peng GJ, Kuan YC, Chou HY, Fu TK, Lin JS, Hsu WH, Yang MT. Stereoselective synthesis of (R)-phenylephrine using recombinant Escherichia coli cells expressing a novel short-chain dehydrogenase/reductase gene from Serratia marcescens BCRC 10948. J Biotechnol 2013; 170:6-9. [PMID: 24291189 DOI: 10.1016/j.jbiotec.2013.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
Abstract
(R)-Phenylephrine [(R)-PE] is an α1-adrenergic receptor agonist and is widely used as a nasal decongestant to treat the common cold without the side effects of other ephedrine adrenergic drugs. We identified a short-chain dehydrogenase/reductase (SM_SDR) from Serratia marcescens BCRC 10948 that was able to convert 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) into (R)-PE. The SM_SDR used NADPH and NADH as cofactors with specific activities of 17.35±0.71 and 5.57±0.07mU/mg protein, respectively, at 30°C and pH 7.0, thereby indicating that this enzyme could be categorized as an NADPH-preferring short-chain dehydrogenase/reductase. Escherichia coli strain BL21 (DE3) expressing SM_SDR could convert HPMAE into (R)-PE with more than 99% enantiomeric excess. The productivity and conversion yield were 0.57mmolPE/lh and 51.06%, respectively, using 10mM HPMAE. Fructose was the most effective carbon source for the conversion of HPMAE to (R)-PE.
Collapse
Affiliation(s)
- Guan-Jhih Peng
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yi-Chia Kuan
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hsiao-Yi Chou
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Tze-Kai Fu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Jia-Shin Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wen-Hwei Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan.
| | - Ming-Te Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
10
|
Enantioselective synthesis of (S)-phenylephrine by recombinant Escherichia coli cells expressing the short-chain dehydrogenase/reductase gene from Serratia quinivorans BCRC 14811. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Wang Z, Song Q, Yu M, Wang Y, Xiong B, Zhang Y, Zheng J, Ying X. Characterization of a stereospecific acetoin(diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Appl Microbiol Biotechnol 2013; 98:641-50. [PMID: 23568047 DOI: 10.1007/s00253-013-4870-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/12/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
Abstract
Rhodococcus erythropolis WZ010 was capable of producing optically pure (2S,3S)-2,3-butanediol in alcoholic fermentation. The gene encoding an acetoin(diacetyl) reductase from R. erythropolis WZ010 (ReADR) was cloned, overexpressed in Escherichia coli, and subsequently purified by Ni-affinity chromatography. ReADR in the native form appeared to be a homodimer with a calculated subunit size of 26,864, belonging to the family of the short-chain dehydrogenase/reductases. The enzyme accepted a broad range of substrates including aliphatic and aryl alcohols, aldehydes, and ketones. It exhibited remarkable tolerance to dimethyl sulfoxide (DMSO) and retained 53.6 % of the initial activity after 4 h incubation with 30 % (v/v) DMSO. The enzyme displayed absolute stereospecificity in the reduction of diacetyl to (2S,3S)-2,3-butanediol via (S)-acetoin. The optimal pH and temperature for diacetyl reduction were pH 7.0 and 30 °C, whereas those for (2S,3S)-2,3-butanediol oxidation were pH 9.5 and 25 °C. Under the optimized conditions, the activity of diacetyl reduction was 11.9-fold higher than that of (2S,3S)-2,3-butanediol oxidation. Kinetic parameters of the enzyme showed lower K(m) values and higher catalytic efficiency for diacetyl and NADH in comparison to those for (2S,3S)-2,3-butanediol and NAD⁺, suggesting its physiological role in favor of (2S,3S)-2,3-butanediol formation. Interestingly, the enzyme showed higher catalytic efficiency for (S)-1-phenylethanol oxidation than that for acetophenone reduction. ReADR-catalyzed asymmetric reduction of diacetyl was coupled with stereoselective oxidation of 1-phenylethanol, which simultaneously formed both (2S,3S)-2,3-butanediol and (R)-1-phenylethanol in great conversions and enantiomeric excess values.
Collapse
Affiliation(s)
- Zhao Wang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang S, Xu Y, Zhang R, Zhang B, Xiao R. Improvement of (R)-carbonyl reductase-mediated biosynthesis of (R)-1-phenyl-1,2-ethanediol by a novel dual-cosubstrate-coupled system for NADH recycling. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Yang C, Ying X, Yu M, Zhang Y, Xiong B, Song Q, Wang Z. Towards the discovery of alcohol dehydrogenases: NAD(P)H fluorescence-based screening and characterization of the newly isolated Rhodococcus erythropolis WZ010 in the preparation of chiral aryl secondary alcohols. J Ind Microbiol Biotechnol 2012; 39:1431-43. [PMID: 22743788 DOI: 10.1007/s10295-012-1160-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
A simple and reliable procedure was developed to screen biocatalysts with high alcohol dehydrogenase activity, efficient internal coenzyme regeneration, and high stereoselectivity. The strategy of activity screening in a microtitre plate format was based on the detection of fluorescence of NAD(P)H originating from the oxidation of alcohols. The primary and secondary screenings from soil samples yielded a versatile bacterial biocatalyst Rhodococcus erythropolis WZ010 demonstrating potential for the preparation of chiral aryl secondary alcohols. In terms of activity and stereoselectivity, the optimized reaction conditions in the stereoselective oxidation were 30 °C, pH 10.5, and 250 rpm, whereas bioreduction using glucose as co-substrate was the most favorable at 35 °C and pH 7.5 in the static reaction mixture. Under the optimized conditions, fresh cells of the strain stereoselectively oxidized the (S)-enantiomer of racemic 1-phenylethanol (120 mM) to acetophenone and afforded the unoxidized (R)-1-phenylethanol in 49.4 % yield and >99.9 % enantiomeric excess (e.e.). In the reduction of 10 mM acetophenone, the addition of 100 mM glucose significantly increased the conversion rate from 3.1 to 97.4 %. In the presence of 800 mM glucose, acetophenone and other aromatic ketones (80 mM) were enantioselectively reduced to corresponding (S)-alcohols with excellent e.e. values. Both stereoselective oxidation and asymmetric reduction required no external cofactor regeneration system.
Collapse
Affiliation(s)
- Chi Yang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Hall M, Bommarius AS. Enantioenriched Compounds via Enzyme-Catalyzed Redox Reactions. Chem Rev 2011; 111:4088-110. [DOI: 10.1021/cr200013n] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mélanie Hall
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|