1
|
Xu R, Zheng Y, Tai W. A single-chain fab derived drug conjugate for HER2 specific delivery. Biomaterials 2025; 313:122798. [PMID: 39244823 DOI: 10.1016/j.biomaterials.2024.122798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Despite the development of antibody-drug conjugates, the fragment Fab-based drug conjugates offer some unique capabilities in terms of safety, clearance, penetration and others. Current methods for preparing Fab drug conjugates are limited by the availability and stability of Fab proteins, leaving reports on this rare. Here, we found that a single-chain scaffold of Fab enables stabilization of the paired structure and supports high-yield expression in bacteria cytoplasm. Furthermore, we conjugated anti-neoplastic agent SN38 to the C-terminus by sortase A ligation and generated a homogenous Fab conjugate with the drug-to-Fab ratio of 1. The resulting anti-HER2 Fab-SN38 conjugate demonstrated potent and antigen-dependent cell-killing ability with the aid of its special cathepsin-triggered cyclization-promoted release mechanism. In vivo, Fab-SN38 can prevent growths of HER2-positive tumors in athymic mice and be well tolerated to the treatment at 7 mg/kg per dose. Anti-tumor activity, high dose tolerance and penetration advantage observed in this study would merit Fab conjugate investigation in target chemotherapy.
Collapse
Affiliation(s)
- Ruolin Xu
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yan Zheng
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Wanyi Tai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
2
|
Hussain H, Patel T, Ozanne AMS, Vito D, Ellis M, Hinchliffe M, Humphreys DP, Stephens PE, Sweeney B, White J, Dickson AJ, Smales CM. A comparative analysis of recombinant Fab and full-length antibody production in Chinese hamster ovary cells. Biotechnol Bioeng 2021; 118:4815-4828. [PMID: 34585737 DOI: 10.1002/bit.27944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/31/2021] [Accepted: 09/12/2021] [Indexed: 01/05/2023]
Abstract
Monoclonal antibodies are the leading class of biopharmaceuticals in terms of numbers approved for therapeutic purposes. Antigen-binding fragments (Fab) are also used as biotherapeutics and used widely in research applications. The dominant expression systems for full-length antibodies are mammalian cell-based, whereas for Fab molecules the preference has been an expression in bacterial systems. However, advances in CHO and downstream technologies make mammalian systems an equally viable option for small- and large-scale Fab production. Using a panel of full-length IgG antibodies and their corresponding Fab pair with different antigen specificities, we investigated the impact of the IgG and Fab molecule format on production from Chinese hamster ovary (CHO) cells and assessed the cellular capability to process and produce these formats. The full-length antibody format resulted in the recovery of fewer mini-pools posttransfection when compared to the corresponding Fab fragment format that could be interpreted as indicative of a greater overall burden on cells. Antibody-producing cell pools that did recover were subsequently able to achieve higher volumetric protein yields (mg/L) and specific productivity than the corresponding Fab pools. Importantly, when the actual molecules produced per cell of a given format was considered (as opposed to mass), CHO cells produced a greater number of Fab molecules per cell than obtained with the corresponding IgG, suggesting that cells were more efficient at making the smaller Fab molecule. Analysis of cell pools showed that gene copy number was not correlated to the subsequent protein production. The amount of mRNA correlated with secreted Fab production but not IgG, whereby posttranscriptional processes act to limit antibody production. In summary, we provide the first comparative description of how full-length IgG and Fab antibody formats impact on the outcomes of a cell line construction process and identify potential limitations in their production that could be targeted for engineering increases in the efficiency in the manufacture of these recombinant antibody formats.
Collapse
Affiliation(s)
- Hirra Hussain
- Faculty of Science and Engineering, Department of Chemical Engineering and Analytical Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.,CPI, Central Park, Darlington, UK
| | - Tulshi Patel
- Division of Natural Sciences, Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK.,Horizon Discovery Biosciences Limited, Cambridge, UK
| | - Angelica M S Ozanne
- Division of Natural Sciences, Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK
| | - Davide Vito
- Division of Natural Sciences, Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK.,Mestag Therapeutics Limited, Cambridge, UK
| | - Mark Ellis
- Protein Sciences, UCB Pharma, Berkshire, UK
| | | | | | | | - Bernie Sweeney
- Protein Sciences, UCB Pharma, Berkshire, UK.,Lonza Biologics, Berkshire, UK
| | | | - Alan J Dickson
- Faculty of Science and Engineering, Department of Chemical Engineering and Analytical Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Christopher M Smales
- Division of Natural Sciences, Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK.,National Institute for Bioprocessing Research and Training, Co Dublin, Ireland
| |
Collapse
|
3
|
Chen H, Chen JS, Paerhati P, Jakos T, Bai SY, Zhu JW, Yuan YS. Strategies and Applications of Antigen-Binding Fragment (Fab) Production in Escherichia coli. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1735145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractWith the advancement of genetic engineering, monoclonal antibodies (mAbs) have made far-reaching progress in the treatment of various human diseases. However, due to the high cost of production, the increasing demands for antibody-based therapies have not been fully met. Currently, mAb-derived alternatives, such as antigen-binding fragments (Fab), single-chain variable fragments, bispecifics, nanobodies, and conjugated mAbs have emerged as promising new therapeutic modalities. They can be readily prepared in bacterial systems with well-established fermentation technology and ease of manipulation, leading to the reduction of overall cost. This review aims to shed light on the strategies to improve the expression, purification, and yield of Fab fragments in Escherichia coli expression systems, as well as current advances in the applications of Fab fragments.
Collapse
Affiliation(s)
- Hui Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Jun-Sheng Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Tanja Jakos
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Si-Yi Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Jian-Wei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Yun-Sheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Huleani S, Roberts MR, Beales L, Papaioannou EH. Escherichia coli as an antibody expression host for the production of diagnostic proteins: significance and expression. Crit Rev Biotechnol 2021; 42:756-773. [PMID: 34470557 DOI: 10.1080/07388551.2021.1967871] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This review article concerns the production of recombinant antibody fragments for applications mainly in the diagnostic sector. The so-called "point of care diagnostics" is very important for timely diagnosis and treatment, thus being able to save lives and resources. There is intense pressure for more accurate and less expensive rapid diagnostic tests, with a value preferably <$1. Thus, the large-scale cost-effective production of recombinant antibodies is vital. The importance of Escherichia coli toward the production of inexpensive rapid tests will be explained in this review paper. Details about the different strains of E. coli, the strategies used for the insertion and the expression of recombinant proteins, and the challenges that still exist are provided. Afterward, the importance of the expression scale and culture parameters in the final yield of the antibodies are examined. From this analysis, it appears that for good yields of recombinant antibodies, aside from appropriate gene transfer and expression, the culturing parameters are of paramount importance. Larger scale production is more favorable, mainly due to the higher cell densities that can be achieved. Yields of functional Fab fragments in the range of 10-20 mg/L are considered good in shake flasks, whereas in bioreactors can be up to 1-2 g/L. An amount of 10-500 mg of such antibody per million rapid tests is required. Despite the substantial importance of the production of the antibodies and their fragments, their downstream processing should be appropriately considered from the beginning for achieving the target value of the final rapid diagnostic tests.
Collapse
Affiliation(s)
- Sergiu Huleani
- Engineering Building, Lancaster University, Lancaster, UK
| | | | | | | |
Collapse
|
5
|
Kastenhofer J, Rajamanickam V, Libiseller-Egger J, Spadiut O. Monitoring and control of E. coli cell integrity. J Biotechnol 2021; 329:1-12. [PMID: 33485861 DOI: 10.1016/j.jbiotec.2021.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Soluble expression of recombinant proteins in E. coli is often done by translocation of the product across the inner membrane (IM) into the periplasm, where it is retained by the outer membrane (OM). While the integrity of the IM is strongly coupled to viability and impurity release, a decrease in OM integrity (corresponding to increased "leakiness") leads to accumulation of product in the extracellular space, strongly impacting the downstream process. Whether leakiness is desired or not, differential monitoring and control of IM and OM integrity are necessary for an efficient E. coli bioprocess in compliance with the guidelines of Quality by Design and Process Analytical Technology. In this review, we give an overview of relevant monitoring tools, summarize the research on factors affecting E. coli membrane integrity and provide a brief discussion on how the available monitoring technology can be implemented in real-time control of E. coli cultivations.
Collapse
Affiliation(s)
- Jens Kastenhofer
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Vignesh Rajamanickam
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Julian Libiseller-Egger
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| |
Collapse
|
6
|
Kastenhofer J, Rettenbacher L, Feuchtenhofer L, Mairhofer J, Spadiut O. Inhibition of E. coli Host RNA Polymerase Allows Efficient Extracellular Recombinant Protein Production by Enhancing Outer Membrane Leakiness. Biotechnol J 2020; 16:e2000274. [PMID: 32915502 DOI: 10.1002/biot.202000274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Indexed: 12/20/2022]
Abstract
With the growing interest in continuous cultivation of Escherichia coli, secretion of product to the medium is not only a benefit, but a necessity in future bioprocessing. In this study, it is shown that induced decoupling of growth and heterologous gene expression in the E. coli X-press strain (derived from BL21(DE3)) facilitates extracellular recombinant protein production. The effect of the process parameters temperature and specific glucose consumption rate (qS ) on growth, productivity, lysis and leakiness, is investigated, to find the parameter space allowing extracellular protein production. Two model proteins are used, Protein A (SpA) and a heavy-chain single-domain antibody (VHH), and performance is compared to the industrial standard strain BL21(DE3). It is shown that inducible growth repression in the X-press strain greatly mitigates the effect of metabolic burden under different process conditions. Furthermore, temperature and qS are used to control productivity and leakiness. In the X-press strain, extracellular SpA and VHH titer reach up to 349 and 19.6 mg g-1 , respectively, comprising up to 90% of the total soluble product, while keeping cell lysis at a minimum. The findings demonstrate that the X-press strain constitutes a valuable host for extracellular production of recombinant protein with E. coli.
Collapse
Affiliation(s)
- Jens Kastenhofer
- TU Wien, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Gumpendorfer Strasse 1a, Vienna, 1060, Austria
| | - Lukas Rettenbacher
- TU Wien, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Gumpendorfer Strasse 1a, Vienna, 1060, Austria
| | | | | | - Oliver Spadiut
- TU Wien, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Gumpendorfer Strasse 1a, Vienna, 1060, Austria
| |
Collapse
|
7
|
Korpys-Woźniak P, Kubiak P, Białas W, Celińska E. Impact of overproduced heterologous protein characteristics on physiological response in Yarrowia lipolytica steady-state-maintained continuous cultures. Appl Microbiol Biotechnol 2020; 104:9785-9800. [PMID: 33025130 PMCID: PMC7595971 DOI: 10.1007/s00253-020-10937-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022]
Abstract
Overproduction of recombinant secretory proteins triggers numerous physiological perturbations. Depending on a given heterologous protein characteristics, the producer cell is faced with different challenges which lead to varying responses in terms of its physiology and the target protein production rate. In the present study, we used steady-state-maintained Yarrowia lipolytica cells to investigate the impact of different heterologous proteins on the physiological behavior of the host cells. Such an approach allowed to uncouple the impact of the overproduction of a particular protein from the phenomena that result from growth phase or are caused by the heterogeneity of the analyzed populations. Altogether, eight variants of recombinant strains, individually overproducing heterologous proteins of varying molecular weight (27-65 kDa) and reporting activity (enzymatic and fluorescent) were subjected to chemostat cultivations. The steady-state-maintained cells were analyzed in terms of the substrate utilization, biomass and metabolites production, as well as the reporter protein synthesis. Simplified distribution of carbon and nitrogen between the respective products, as well as expression analysis of the heterologous genes were conducted. The here-obtained data suggest that using a more transcriptionally active promoter results in channeling more C flux towards the target protein, giving significantly higher specific amounts and production rates of the target polypeptide, at the cost of biomass accumulation, and with no significant impact on the polyols production. The extent of the reporter protein's post-translational modifications, i.e., the number of disulfide bonds and glycosylation pattern, strongly impacts the synthesis process. Specific responses in terms of the protein formation kinetics, the gene expression levels, and transcript-to-protein linearity were observed.Key Points• Eight expression systems, producing different reporter proteins were analyzed.• The cells were maintained in steady-state by continuous chemostat culturing.• Protein- and promoter-specific effects were observed.
Collapse
Affiliation(s)
- Paulina Korpys-Woźniak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-627, Poznań, Poland
| | - Piotr Kubiak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-627, Poznań, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-627, Poznań, Poland
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-627, Poznań, Poland.
| |
Collapse
|
8
|
Sandomenico A, Sivaccumar JP, Ruvo M. Evolution of Escherichia coli Expression System in Producing Antibody Recombinant Fragments. Int J Mol Sci 2020; 21:ijms21176324. [PMID: 32878291 PMCID: PMC7504322 DOI: 10.3390/ijms21176324] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Antibodies and antibody-derived molecules are continuously developed as both therapeutic agents and key reagents for advanced diagnostic investigations. Their application in these fields has indeed greatly expanded the demand of these molecules and the need for their production in high yield and purity. While full-length antibodies require mammalian expression systems due to the occurrence of functionally and structurally important glycosylations, most antibody fragments and antibody-like molecules are non-glycosylated and can be more conveniently prepared in E. coli-based expression platforms. We propose here an updated survey of the most effective and appropriate methods of preparation of antibody fragments that exploit E. coli as an expression background and review the pros and cons of the different platforms available today. Around 250 references accompany and complete the review together with some lists of the most important new antibody-like molecules that are on the market or are being developed as new biotherapeutics or diagnostic agents.
Collapse
|
9
|
Soleymani B, Barzegari E, Mansouri K, Karami K, Mohammadi P, Kiani S, Moasefi N, Tabar MS, Mostafaie A. Heterologous expression, purification, and refolding of SRY protein: role of L-arginine as analyzed by simulation and practical study. Mol Biol Rep 2020; 47:5943-5951. [PMID: 32696344 DOI: 10.1007/s11033-020-05667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022]
Abstract
Escherichia coli is a widely-used cell factory for recombinant protein production, nevertheless, high amount of produced protein is seen in aggregated form. The purpose of this study was to improve the solubility of recombinant bovine sex-determining region Y protein (rbSRY) by exploring the effect of temperature, inducer, and water-arginine mixed solvent. Codon-optimized rbSRY expressed in Rosetta-gami B (DE3) pLysS and purified by NI-NTA His-select affinity chromatography in the native and denaturing conditions. A three-dimensional model of SRY was built and studied through molecular dynamics simulations in water and in the presence of L-arginine as co-solvent. Results indicated the significant effects of temperature and IPTG concentration (P < 0.001) on the solubility of rbSRY. The binding activity of native, inclusion bodies and refolded fractions to anti-rbSRY monoclonal antibody were concentration-dependent (P < 0.001). Based on molecular modeling results, the propensity of fragments in the N-terminal domain to form β-sheet and the relative instability of α-helices in terminal domains are the probable reasons for the high aggregation potential of SRY, which are mitigated in the presence of L-arginine. Altogether, our rbSRY protein was properly produced and applying appropriate culture conditions could help enhance its solubility, refold inclusion bodies, and improve its activity upon refolding.
Collapse
Affiliation(s)
- Bijan Soleymani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sarah Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Moasefi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Sharifi Tabar
- School of Life and Environmental Science, University of Sydney, Camperdown, Australia
| | - Ali Mostafaie
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Burdette LA, Leach SA, Wong HT, Tullman-Ercek D. Developing Gram-negative bacteria for the secretion of heterologous proteins. Microb Cell Fact 2018; 17:196. [PMID: 30572895 PMCID: PMC6302416 DOI: 10.1186/s12934-018-1041-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/08/2018] [Indexed: 11/10/2022] Open
Abstract
Gram-negative bacteria are attractive hosts for recombinant protein production because they are fast growing, easy to manipulate, and genetically stable in large cultures. However, the utility of these microbes would expand if they also could secrete the product at commercial scales. Secretion of biotechnologically relevant proteins into the extracellular medium increases product purity from cell culture, decreases downstream processing requirements, and reduces overall cost. Thus, researchers are devoting significant attention to engineering Gram-negative bacteria to secrete recombinant proteins to the extracellular medium. Secretion from these bacteria operates through highly specialized systems, which are able to translocate proteins from the cytosol to the extracellular medium in either one or two steps. Building on past successes, researchers continue to increase the secretion efficiency and titer through these systems in an effort to make them viable for industrial production. Efforts include modifying the secretion tags required for recombinant protein secretion, developing methods to screen or select rapidly for clones with higher titer or efficiency, and improving reliability and robustness of high titer secretion through genetic manipulations. An additional focus is the expression of secretion machineries from pathogenic bacteria in the "workhorse" of biotechnology, Escherichia coli, to reduce handling of pathogenic strains. This review will cover recent advances toward the development of high-expressing, high-secreting Gram-negative production strains.
Collapse
Affiliation(s)
- Lisa Ann Burdette
- Department of Chemical and Biomolecular Engineering, University of California-Berkeley, Berkeley, USA
- Present Address: Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Samuel Alexander Leach
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, USA
| | - Han Teng Wong
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, USA
- Present Address: Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, USA
| |
Collapse
|
11
|
Enhanced expression of soluble antibody fragments by low-temperature and overdosing with a nitrogen source. Enzyme Microb Technol 2018; 115:9-15. [DOI: 10.1016/j.enzmictec.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022]
|
12
|
Peebo K, Neubauer P. Application of Continuous Culture Methods to Recombinant Protein Production in Microorganisms. Microorganisms 2018; 6:E56. [PMID: 29933583 PMCID: PMC6164559 DOI: 10.3390/microorganisms6030056] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022] Open
Abstract
Depending on the environmental conditions, cells adapt their metabolism and specific growth rate. Rearrangements occur on many different levels such as macromolecular composition, gene and protein expression, morphology and metabolic flux patterns. As the interplay of these processes also determines the output of a recombinant protein producing system, having control over specific growth rate of the culture is advantageous. Continuous culture methods were developed to grow cells in a constant environment and have been used for decades to study basic microbial physiology in a controlled and reproducible manner. Our review summarizes the uses of continuous cultures in cell physiology studies and process development, with a focus on recombinant protein-producing microorganisms.
Collapse
Affiliation(s)
- Karl Peebo
- Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Peter Neubauer
- Department of Bioprocess Engineering, Technische Universität Berlin, Ackerstraβe 76, ACK24, D-13355 Berlin, Germany.
| |
Collapse
|
13
|
da Silva AF, García-Fraga B, López-Seijas J, Sieiro C. Optimizing the expression of a Heterologous chitinase: A study of different promoters. Bioengineered 2017; 8:428-432. [PMID: 27893301 DOI: 10.1080/21655979.2016.1249074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Many relevant applications have been demonstrated for chitinolytic enzymes. However, their successful exploitation depends upon the availability of strains and expression conditions that allow the production of active forms and large quantities of these enzymes. Escherichia coli has been commonly used to express and overproduce different proteins, among them chitinases. Improving the functional gene expression of chitinases is key to exploiting their potential. In a recent study, we described the effect of various parameters on the functional expression of 2 chitinases from different families, demonstrating that the effect of each of these parameters on the activity of both chitinases was specific to each enzyme. In this study, the expression of a Lactococcus lactis chitinase encoded by a new allele, ChiA1-2, was optimized. The results showed that not only the expression parameters seemed to influence protein production, solubility and activity but also the plasmid used for the expression. Herein, we describe the effect of 2 different promoters, tac and T7, on the expression of the active form of the chitinolytic enzyme.
Collapse
Affiliation(s)
- Abigail F da Silva
- a Department of Functional Biology and Health Sciences , Microbiology Area, University of Vigo, Lagoas - Marcosende , Vigo , Spain
| | - Belén García-Fraga
- a Department of Functional Biology and Health Sciences , Microbiology Area, University of Vigo, Lagoas - Marcosende , Vigo , Spain
| | - Jacobo López-Seijas
- a Department of Functional Biology and Health Sciences , Microbiology Area, University of Vigo, Lagoas - Marcosende , Vigo , Spain
| | - Carmen Sieiro
- a Department of Functional Biology and Health Sciences , Microbiology Area, University of Vigo, Lagoas - Marcosende , Vigo , Spain
| |
Collapse
|
14
|
Alonso S, Rendueles M, Díaz M. Tunable decoupled overproduction of lactobionic acid in Pseudomonas taetrolens through temperature-control strategies. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Marschall L, Sagmeister P, Herwig C. Tunable recombinant protein expression in E. coli: enabler for continuous processing? Appl Microbiol Biotechnol 2016; 100:5719-28. [PMID: 27170324 PMCID: PMC4957632 DOI: 10.1007/s00253-016-7550-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023]
Abstract
Tuning of transcription is a powerful process technological tool for efficient recombinant protein production in Escherichia coli. Many challenges such as product toxicity, formation of inclusion bodies, cell death, and metabolic burden are associated with non-suitable (too high or too low) levels of recombinant protein expression. Tunable expression systems allow adjusting the recombinant protein expression using process technological means. This enables to exploit the cell's metabolic capacities to a maximum. Within this article, we review genetic and process technological aspects of tunable expression systems in E. coli, providing a roadmap for the industrial exploitation of the reviewed technologies. We attempt to differentiate the term "expression tuning" from its inflationary use by providing a concise definition and highlight interesting fields of application for this versatile new technology. Dependent on the type of inducer (metabolizable or non-metabolizable), different process strategies are required in order to achieve tuning. To fully profit from the benefits of tunable systems, an independent control of growth rate and expression rate is indispensable. Being able to tackle problems such as long-term culture stability and constant product quality expression tuning is a promising enabler for continuous processing in biopharmaceutical production.
Collapse
Affiliation(s)
- Lukas Marschall
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Vienna, Austria
| | | | - Christoph Herwig
- Exputec GmbH, Vienna, Austria. .,Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Vienna University of Technology, Gumpendorferstraße 1a/166-4, 1060, Vienna, Austria.
| |
Collapse
|
16
|
Akbari V, Mir Mohammad Sadeghi H, Jafrian-Dehkordi A, Abedi D, Chou CP. Functional expression of a single-chain antibody fragment against human epidermal growth factor receptor 2 (HER2) in Escherichia coli. ACTA ACUST UNITED AC 2014; 41:947-56. [DOI: 10.1007/s10295-014-1437-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/10/2014] [Indexed: 11/30/2022]
Abstract
Abstract
The human epidermal growth factor receptor (HER) family plays an important role in cell growth and signaling and alteration of its function has been demonstrated in many different kinds of cancer. Receptor dimerization is necessary for the HER signal transduction pathway and tyrosine kinase activity. Recently, several monoclonal antibodies have been developed to directly interfere with ligand–HER receptor binding and receptor dimerization. A single chain variable fragment (ScFv) is a valuable alternative to an intact antibody. This report describes the production and purification of an ScFv specific for domain II of the HER2 receptor in Escherichia coli BL21 (DE3) cytoplasm. The majority of expressed of anti-her2his-ScFv protein was produced as inclusion bodies. A Ni-NTA affinity column was used to purify the anti-her2his-ScFv protein. The molecular weight of anti-her2his-ScFv protein was estimated to be approximately 27 kDa, as confirmed by SDS-PAGE and Western blotting assay. The anti-her2his-ScFv showed near 95 % purity and reached a yield of approximately 29 mg/l in flask fermentation. The purified anti-her2his-ScFv showed its biological activity by binding to HER2 receptor on the surface of BT-474 cells. This ScFv may be a potential pharmaceutical candidate for targeting tumour cells overexpressing HER2 receptor.
Collapse
Affiliation(s)
- Vajihe Akbari
- grid.411036.1 000000011498685X Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy Isfahan University of Medical Sciences Hezar Jarib Avenue Isfahan Iran
| | - Hamid Mir Mohammad Sadeghi
- grid.411036.1 000000011498685X Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy Isfahan University of Medical Sciences Hezar Jarib Avenue Isfahan Iran
| | - Abbas Jafrian-Dehkordi
- grid.411036.1 000000011498685X Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy Isfahan University of Medical Sciences Hezar Jarib Avenue Isfahan Iran
| | - Daryoush Abedi
- grid.411036.1 000000011498685X Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy Isfahan University of Medical Sciences Hezar Jarib Avenue Isfahan Iran
| | - C Perry Chou
- grid.46078.3d 0000000086441405 Department of Chemical Engineering University of Waterloo 200 University Avenue N2L 3G1 Waterloo ON Canada
| |
Collapse
|
17
|
Qi J, Ye X, Ren G, Kan F, Zhang Y, Guo M, Zhang Z, Li D. Pharmacological efficacy of anti-IL-1β scFv, Fab and full-length antibodies in treatment of rheumatoid arthritis. Mol Immunol 2014; 57:59-65. [DOI: 10.1016/j.molimm.2013.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
|
18
|
Vélez AM, da Silva AJ, Luperni Horta AC, Sargo CR, Campani G, Gonçalves Silva G, de Lima Camargo Giordano R, Zangirolami TC. High-throughput strategies for penicillin G acylase production in rE. coli fed-batch cultivations. BMC Biotechnol 2014; 14:6. [PMID: 24444109 PMCID: PMC3913322 DOI: 10.1186/1472-6750-14-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 12/30/2013] [Indexed: 11/14/2022] Open
Abstract
Background Penicillin G acylase (PGA) is used industrially to catalyze the hydrolysis of penicillin G to obtain 6-aminopenicillanic acid. In Escherichia coli, the most-studied microorganism for PGA production, this enzyme accumulates in the periplasmic cell space, and temperature plays an important role in the correct synthesis of its subunits. Results This work investigates the influence of medium composition, cultivation strategy, and temperature on PGA production by recombinant E. coli cells. Shake flask cultures carried out using induction temperatures ranging from 18 to 28°C revealed that the specific enzyme activity achieved at 20°C (3000 IU gDCW-1) was 6-fold higher than the value obtained at 28°C. Auto-induction and high cell density fed-batch bioreactor cultures were performed using the selected induction temperature, with both defined and complex media, and IPTG and lactose as inducers. Final biomass concentrations of 100 and 120 gDCW L-1, and maximum enzyme productivities of 7800 and 5556 IU L-1 h-1, were achieved for high cell density cultures using complex and defined media, respectively. Conclusions To the best of our knowledge, the volumetric enzyme activity and productivity values achieved using the complex medium are the highest ever reported for PGA production using E. coli. Overall PGA recovery yields of 64 and 72% after purification were achieved for crude extracts obtained from cells cultivated in defined and complex media, respectively. The complex medium was the most cost-effective for PGA production, and could be used in both high cell density and straightforward auto-induction protocols.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Teresa Cristina Zangirolami
- Chemical Engineering Department, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235, C,P, 676, CEP 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
19
|
A dynamic method for the investigation of induced state metabolic capacities as a function of temperature. Microb Cell Fact 2013; 12:94. [PMID: 24127686 PMCID: PMC4015482 DOI: 10.1186/1475-2859-12-94] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
Background Science-based recombinant bioprocess designs as well as the design of statistical experimental plans for process optimization (Design of Experiments, DoE) demand information on physiological bioprocess boundaries, such as the onset of acetate production, adaptation times, mixed feed metabolic capabilities or induced state maximum metabolic rates as at the desired cultivation temperature. Dynamic methods provide experimental alternatives to determine this information in a fast and efficient way. Information on maximum metabolic capabilities as a function of temperature is needed in case a reduced cultivation temperature is desirable (e.g. to avoid inclusion body formation) and an appropriate feeding profile is to be designed. Results Here, we present a novel dynamic method for the determination of the specific growth rate as a function of temperature for induced recombinant bacterial bioprocesses. The method is based on the control of the residual substrate concentration at non-limiting conditions with dynamic changes in cultivation temperature. The presented method was automated in respect to information extraction and closed loop control by means of in-line Fourier Transformation Infrared Spectroscopy (FTIR) residual substrate measurements and on-line first principle rate-based soft-sensors. Maximum induced state metabolic capabilities as a function of temperature were successfully extracted for a recombinant E. coli C41 fed-batch bioprocess without the need for sampling in a time frame of 20 hours. Conclusions The presented method was concluded to allow the fast and automated extraction of maximum metabolic capabilities (specific growth rate) as a function of temperature. This complements the dynamic toolset necessary for science-based recombinant bacterial bioprocess design and DoE design.
Collapse
|
20
|
Extracellular recombinant protein production under continuous culture conditions with Escherichia coli using an alternative plasmid selection mechanism. Bioprocess Biosyst Eng 2013; 37:401-13. [PMID: 23820825 DOI: 10.1007/s00449-013-1005-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/17/2013] [Indexed: 12/11/2022]
Abstract
The secretion of recombinant proteins into the extracellular space by Escherichia coli presents advantages like easier purification and protection from proteolytic degradation. The controlled co-expression of a bacteriocin release protein aids in moving periplasmic proteins through the outer membrane. Since such systems have rarely been applied in continuous culture it seemed to be attractive to study the interplay between growth-phase regulated promoters controlling release protein genes and the productivity of a chemostat process. To avoid the use of antibiotics and render this process more sustainable, alternative plasmid selection mechanisms were required. In the current study, the strain E. coli JM109 harboring plasmid p582 was shown to stably express and secrete recombinant β-glucanase in continuous culture using a minimal medium. The segregational instability of the plasmid in the absence of antibiotic selection pressure was demonstrated. The leuB gene, crucial in the leucine biosynthetic pathway, was cloned onto plasmid p582 and the new construct transformed into an E. coli Keio (ΔleuB) knockout strain. The ability of the construct to complement the leucine auxotrophy was initially tested in shake-flasks and batch cultivation. Later, this strain was successfully grown for more than 200 h in a chemostat and was found to be able to express the recombinant protein. Significantly, it showed a stable maintenance of the recombinant plasmid in the absence of any antibiotics. The plasmid stability in a continuously cultivated E. coli fermentation, in the absence of antibiotics, with extracellular secretion of recombinant protein provides an interesting model for further improvements.
Collapse
|
21
|
Liu L, Yang H, Shin HD, Chen RR, Li J, Du G, Chen J. How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered 2013; 4:212-23. [PMID: 23686280 DOI: 10.4161/bioe.24761] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.g., Escherichia coli, Bacillus and lactic acid bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g., Pichia pastoris). The favorable and very advantageous characteristics of these species have resulted in an increasing number of biotechnological applications. Bacterial hosts (e.g., E. coli) can be used to quickly and easily overexpress recombinant enzymes; however, bacterial systems cannot express very large proteins and proteins that require post-translational modifications. The main bacterial expression hosts, with the exception of lactic acid bacteria and filamentous fungi, can produce several toxins which are not compatible with the expression of recombinant enzymes in food and drugs. However, due to the multiplicity of the physiological impacts arising from high-level expression of genes encoding the enzymes and expression hosts, the goal of overproduction can hardly be achieved, and therefore, the yield of recombinant enzymes is limited. In this review, the recent strategies used for the high-level expression of microbial enzymes in the hosts mentioned above are summarized and the prospects are also discussed. We hope this review will contribute to the development of the enzyme-related research field.
Collapse
Affiliation(s)
- Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | | | | | | | | | | |
Collapse
|