1
|
Aguirre-Zapata C, Segura D, Ruiz J, Galindo E, Pérez A, Díaz-Barrera A, Peña C. The Absence of Phasins PhbP2 and PhbP3 in Azotobacter vinelandii Determines the Growth and Poly-3-hydroxybutyrate Synthesis. Polymers (Basel) 2024; 16:2897. [PMID: 39458725 PMCID: PMC11511541 DOI: 10.3390/polym16202897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Phasins are proteins located on the surface of poly-3-hydroxybutyrate (P3HB) granules that affect the metabolism of the polymer, the size and number of the granules, and some also have stress-protecting and growth-promoting effects. This study evaluated the effect of inactivating two new phasins (PhbP2 or PhbP3) on the cellular growth, production, and molecular mass of P3HB in cultures under low or high oxygen transfer rates (OTR). The results revealed that under high OTRₘₐₓ conditions (between 8.1 and 8.9 mmol L-1 h-1), the absence of phasins PhbP2 and PhbP3 resulted in a strong negative effect on the growth rate; in contrast, the rates of specific oxygen consumption increased in both cases. This behavior was not observed under a low oxygen transfer rate (3.9 ± 0.71 mol L-1 h-1), where cellular growth and oxygen consumption were the same for the different strains evaluated. It was observed that at high OTR, the absence of PhbP3 affected the production of P3HB, decreasing it by 30% at the end of cultivation. In contrast, the molecular weight remained constant over time. In summary, the absence of phasin PhbP3 significantly impacted the growth rate and polymer synthesis, particularly at high maximum oxygen transfer rates (OTRₘₐₓ).
Collapse
Affiliation(s)
- Claudia Aguirre-Zapata
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (C.A.-Z.); (E.G.)
| | - Daniel Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (D.S.); (J.R.)
| | - Jessica Ruiz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (D.S.); (J.R.)
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (C.A.-Z.); (E.G.)
| | - Andrés Pérez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147 Casilla 4059, Valparaíso 2340025, Chile; (A.P.); (A.D.-B.)
| | - Alvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147 Casilla 4059, Valparaíso 2340025, Chile; (A.P.); (A.D.-B.)
| | - Carlos Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (C.A.-Z.); (E.G.)
| |
Collapse
|
2
|
Dudun AA, Makhina TK, Bonartsev AP, Bonartseva GA. Effect of Different Sucrose Concentrations on the Biosynthesis of Poly(3-Hydroxybutyrate) and Alginate by the Bacterial Strain Azotobacter Vinelandii 12 under Different Aeration Conditions. APPL BIOCHEM MICRO+ 2024; 60:821-832. [DOI: 10.1134/s0003683824604876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 01/11/2025]
|
3
|
Su Q, Bazylinski DA, Jensen MM. Effect of oxic and anoxic conditions on intracellular storage of polyhydroxyalkanoate and polyphosphate in Magnetospirillum magneticum strain AMB-1. Front Microbiol 2023; 14:1203805. [PMID: 37396362 PMCID: PMC10310966 DOI: 10.3389/fmicb.2023.1203805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Magnetotactic bacteria (MTB) are microorganisms widely inhabiting the oxic-anoxic interface of aquatic environments. Beside biomineralizing magnetic nanocrystals, MTBs are able to sequester various chemical elements (e.g., carbon and phosphorus) for the biogenesis of intracellular granules, like polyhydroxyalkanoate (PHA) and polyphosphate (polyP), making them potentially important in biogeochemical cycling. Yet, the environmental controls of intracellular storage of carbon and phosphorus in MTB remain poorly understood. Here, we investigated the influence of oxic, anoxic and transient oxic-anoxic conditions on intracellular storage of PHA and polyP in Magnetospirillum magneticum strain AMB-1. In the incubations with oxygen, transmission electron microscopy revealed intercellular granules highly rich in carbon and phosphorus, which were further interpreted as PHA and polyP based on chemical and Energy-Dispersive X-ray spectroscopy analysis. Oxygen had a strong effect on PHA and polyP storage in AMB-1 cells, as PHA and polyP granules accounted for up to 47 ± 23% and 5.1 ± 1.7% of the cytoplasmic space, respectively, during continuous oxic conditions, while granules disappeared in anoxic incubations. Poly 3-hydroxybutyrate (PHB) and poly 3-hydroxyvalerate (PHV) accounted for 0.59 ± 0.66% and 0.0033 ± 0.0088% of dry cell weight, respectively, in anoxic incubations, while the values increased by a factor of 7 and 37 after oxygen was introduced. The results highlight a tight link between oxygen, carbon and phosphorus metabolisms in MTB, where favorable oxic growth conditions can lead to metabolic induction of polyP and PHA granule biogenesis.
Collapse
Affiliation(s)
- Qingxian Su
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Dennis A. Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, United States
| | - Marlene Mark Jensen
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
4
|
Sparviero S, Dicke MD, Rosch TM, Castillo T, Salgado-Lugo H, Galindo E, Peña C, Büchs J. Yeast extracts from different manufacturers and supplementation of amino acids and micro elements reveal a remarkable impact on alginate production by A. vinelandii ATCC9046. Microb Cell Fact 2023; 22:99. [PMID: 37170263 PMCID: PMC10176783 DOI: 10.1186/s12934-023-02112-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND In research and production, reproducibility is a key factor, to meet high quality and safety standards and maintain productivity. For microbial fermentations, complex substrates and media components are often used. The complex media components can vary in composition, depending on the lot and manufacturing process. These variations can have an immense impact on the results of biological cultivations. The aim of this work was to investigate and characterize the influence of the complex media component yeast extract on cultivations of Azotobacter vinelandii under microaerobic conditions. Under these conditions, the organism produces the biopolymer alginate. The focus of the investigation was on the respiration activity, cell growth and alginate production. RESULTS Yeast extracts from 6 different manufacturers and 2 different lots from one manufacturer were evaluated. Significant differences on respiratory activity, growth and production were observed. Concentration variations of three different yeast extracts showed that the performance of poorly performing yeast extracts can be improved by simply increasing their concentration. On the other hand, the results with well-performing yeast extracts seem to reach a saturation, when their concentration is increased. Cultivations with poorly performing yeast extract were supplemented with grouped amino acids, single amino acids and micro elements. Beneficial results were obtained with the supplementation of copper sulphate, cysteine or a combination of both. Furthermore, a correlation between the accumulated oxygen transfer and the final viscosity (as a key performance indicator), was established. CONCLUSION The choice of yeast extract is crucial for A. vinelandii cultivations, to maintain reproducibility and comparability between cultivations. The proper use of specific yeast extracts allows the cultivation results to be specifically optimised. In addition, supplements can be applied to modify and improve the properties of the alginate. The results only scratch the surface of the underlying mechanisms, as they are not providing explanations on a molecular level. However, the findings show the potential of optimising media containing yeast extract for alginate production with A. vinelandii, as well as the potential of targeted supplementation of the media.
Collapse
Affiliation(s)
- Sarah Sparviero
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Max Daniel Dicke
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Tobias M Rosch
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Tania Castillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Holjes Salgado-Lugo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
- Programa Investigadoras e Investigadores por México del CONACyT, Consejo Nacional de Ciencia y Tecnología, 03940, Mexico City, México
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Carlos Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Jochen Büchs
- Aachener Verfahrenstechnik - Chair of Biochemical Engineering, RWTH Aachen University, Bldg. NGP², Forckenbeckstr. 51, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Liu S, Yu JM, Gan YC, Qiu XZ, Gao ZC, Wang H, Chen SX, Xiong Y, Liu GH, Lin SE, McCarthy A, John JV, Wei DX, Hou HH. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res 2023; 10:16. [PMID: 36978167 PMCID: PMC10047482 DOI: 10.1186/s40779-023-00448-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering (TE) and regenerative medicine. In contrast to conventional biomaterials or synthetic materials, biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix (ECM). Additionally, such materials have mechanical adaptability, microstructure interconnectivity, and inherent bioactivity, making them ideal for the design of living implants for specific applications in TE and regenerative medicine. This paper provides an overview for recent progress of biomimetic natural biomaterials (BNBMs), including advances in their preparation, functionality, potential applications and future challenges. We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM. Moreover, we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications. Finally, we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
Collapse
Affiliation(s)
- Shuai Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| | - Jiang-Ming Yu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336 China
| | - Yan-Chang Gan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| | - Xiao-Zhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| | - Zhe-Chen Gao
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336 China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033 Guangdong China
| | - Shi-Xuan Chen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011 Zhejiang China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Si-En Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, 999077 China
| | - Alec McCarthy
- Department of Functional Materials, Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Johnson V. John
- Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68130 USA
| | - Dai-Xu Wei
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336 China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002 Sichuan China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710127 China
| | - Hong-Hao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| |
Collapse
|
6
|
Li T, Li W, Chai X, Dai X, Wu B. PHA stimulated denitrification through regulation of preferential cofactor provision and intracellular carbon metabolism at different dissolved oxygen levels by Pseudomonas stutzeri. CHEMOSPHERE 2022; 309:136641. [PMID: 36183891 DOI: 10.1016/j.chemosphere.2022.136641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Denitrification, a typical biological process mediated by complex environmental factors, i.e., carbon sources and dissolved oxygen (DO), has attracted great attention due to its contribution to the control of eutrophication and the biochemical cycling of nitrogen. However, the effects of carbon source on electron distribution and enzyme expression for enhanced denitrification under competition of electron acceptors (DO and nitrate) remain unclear. Here, we profile the carbon metabolic pathway of polyhydroxybutyrate (PHB) and glucose (Glu) at high and low DO levels (50% and 10% saturated DO, respectively). It was found that PHB enhanced the growth of Pseudomonas stutzeri (model denitrifying bacterium) and improved the specific nitrogen removal rate (SNRR) at all DO levels. The functional proteins had a better affinity for the cofactor nicotinamide-adenine dinucleotide (NADH) than for nicotinamide adenine dinucleotide phosphate (NADPH); thus, more electrons were involved in nitrogen reduction and intracellular PHB production in the PHB groups than in the Glu groups. Furthermore, the expression difference of enzymes in glucose and PHB metabolism was demonstrated by metaproteomic and target protein analysis, implying that PHB-driven intracellular carbon accumulation could optimize the intracellular electron allocation and correspondingly promote nitrogen metabolism. Our work integrated the mechanisms of intracellular carbon metabolism with preferences for electron transfer pathways in denitrification, providing a new perspective on how the selective parameters regulated microbial functions involved in denitrification.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenxuan Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01 T-Lab Building, 117411, Singapore
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
7
|
Urtuvia V, Ponce B, Andler R, Peña C, Diaz-Barrera A. Extended batch cultures for poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) production by Azotobacter vinelandii OP growing at different aeration rates. 3 Biotech 2022; 12:304. [PMID: 36276477 PMCID: PMC9525563 DOI: 10.1007/s13205-022-03380-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a polymer produced by Azotobacter vinelandii OP. In the bioreactor, PHBV production and its molar composition are affected by aeration rate. PHBV production by A. vinelandii OP was evaluated using extended batch cultures at different aeration rates, which determined different oxygen transfer rates (OTR) in the cultures. Under the conditions evaluated, PHBV with different 3-hydroxyvalerate (3HV) fractions were obtained. In the cultures with a low OTR (6.7 mmol L-1 h-1, at 0.3 vvm), a PHBV content of 38% w w-1 with 9.1 mol % 3HV was achieved. The maximum PHBV production (72% w w-1) was obtained at a high OTR (18.2 mmol L-1 h-1, at 1.0 vvm), both at 48 h. Thus, PHBV production increased in the bioreactor with an increased aeration rate, but not the 3HV fraction in the polymer chain. An OTR of 24.9 mmol L-1 h-1 (at 2.1 vvm) was the most suitable for improving the PHBV content (61% w w-1) and a high 3HV fraction of 20.8 mol % (at 48 h); and volumetric productivity (0.15 g L-1 h-1). The findings indicate that the extended batch culture at 2.1 vvm is the most adequate mode of cultivation to produce higher biomass and PHBV with a high 3HV fraction. Overall, the results have shown that the PHBV production and 3HV fraction could be affected by the aeration rate and the proposed approach could be applied to implement cultivation strategies to optimize PHBV production for different biotechnological applications.
Collapse
Affiliation(s)
- Viviana Urtuvia
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147 Casilla 4059, Valparaíso, Chile
| | - Belén Ponce
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147 Casilla 4059, Valparaíso, Chile
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio),Universidad Católica del Maule, Talca, Chile
| | - Carlos Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alvaro Diaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147 Casilla 4059, Valparaíso, Chile
| |
Collapse
|
8
|
Rnf and Fix Have Specific Roles during Aerobic Nitrogen Fixation in Azotobacter vinelandii. Appl Environ Microbiol 2022; 88:e0104922. [PMID: 36000884 PMCID: PMC9469703 DOI: 10.1128/aem.01049-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biological nitrogen fixation requires large amounts of energy in the form of ATP and low potential electrons to overcome the high activation barrier for cleavage of the dinitrogen triple bond. The model aerobic nitrogen-fixing bacteria, Azotobacter vinelandii, generates low potential electrons in the form of reduced ferredoxin (Fd) and flavodoxin (Fld) using two distinct mechanisms via the enzyme complexes Rnf and Fix. Both Rnf and Fix are expressed during nitrogen fixation, but deleting either rnf1 or fix genes has little effect on diazotrophic growth. However, deleting both rnf1 and fix eliminates the ability to grow diazotrophically. Rnf and Fix both use NADH as a source of electrons, but overcoming the energetics of NADH's endergonic reduction of Fd/Fld is accomplished through different mechanisms. Rnf harnesses free energy from the chemiosmotic potential, whereas Fix uses electron bifurcation to effectively couple the endergonic reduction of Fd/Fld to the exergonic reduction of quinone. Different reaction stoichiometries and condition-specific differential gene expression indicate specific roles for the two reactions. This work's complementary physiological studies and thermodynamic modeling reveal how Rnf and Fix balance redox homeostasis in various conditions. Specifically, the Fix complex is required for efficient growth under low oxygen concentrations, while Rnf is presumed to maintain reduced Fd/Fld production for nitrogenase under standard conditions. This work provides a framework for understanding how the production of low potential electrons sustains robust nitrogen fixation in various conditions. IMPORTANCE The availability of fixed nitrogen is critical for life in many ecosystems, from extreme environments to agriculture. Due to the energy demands of biological nitrogen fixation, organisms must tailor their metabolism during diazotrophic growth to deliver the energy requirements to nitrogenase in the form of ATP and low potential electrons. Therefore, a complete understanding of diazotrophic energy metabolism and redox homeostasis is required to understand the impact on ecological communities or to promote crop growth in agriculture through engineered diazotrophs.
Collapse
|
9
|
Chuacharoen T, Aroonsong S, Chysirichote T. Alginate Production of Azotobacter vinelandii Using Sugar Cane Juice as the Main Carbon Source in an Airlift Bioreactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thanida Chuacharoen
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, 1 U Thong Nok Rd, Dusit, Bangkok 10300, Thailand
| | - Soysruang Aroonsong
- Department of Food Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, 1 Chalongkrung 1, Chalongkrung Rd, Ladkrabang, Bangkok 10520 Thailand
| | - Teerin Chysirichote
- Department of Food Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, 1 Chalongkrung 1, Chalongkrung Rd, Ladkrabang, Bangkok 10520 Thailand
| |
Collapse
|
10
|
Takimoto R, Tatemichi Y, Aoki W, Kosaka Y, Minakuchi H, Ueda M, Kuroda K. A critical role of an oxygen-responsive gene for aerobic nitrogenase activity in Azotobacter vinelandii and its application to Escherichia coli. Sci Rep 2022; 12:4182. [PMID: 35264690 PMCID: PMC8907163 DOI: 10.1038/s41598-022-08007-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Since nitrogenase is irreversibly inactivated within a few minutes after exposure to oxygen, current studies on the heterologous expression of nitrogenase are limited to anaerobic conditions. This study comprehensively identified genes showing oxygen-concentration-dependent expression only under nitrogen-fixing conditions in Azotobacter vinelandii, an aerobic diazotroph. Among the identified genes, nafU, with an unknown function, was greatly upregulated under aerobic nitrogen-fixing conditions. Through replacement and overexpressing experiments, we suggested that nafU is involved in the maintenance of nitrogenase activity under aerobic nitrogenase activity. Furthermore, heterologous expression of nafU in nitrogenase-producing Escherichia coli increased nitrogenase activity under aerobic conditions by 9.7 times. Further analysis of NafU protein strongly suggested its localization in the inner membrane and raised the possibility that this protein may lower the oxygen concentration inside the cells. These findings provide new insights into the mechanisms for maintaining stable nitrogenase activity under aerobic conditions in A. vinelandii and provide a platform to advance the use of nitrogenase under aerobic conditions.
Collapse
Affiliation(s)
- Ren Takimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuki Tatemichi
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda, Chiba, 278-0037, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuishin Kosaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
11
|
Dudun AA, Akoulina EA, Zhuikov VA, Makhina TK, Voinova VV, Belishev NV, Khaydapova DD, Shaitan KV, Bonartseva GA, Bonartsev AP. Competitive Biosynthesis of Bacterial Alginate Using Azotobacter vinelandii 12 for Tissue Engineering Applications. Polymers (Basel) 2021; 14:131. [PMID: 35012152 PMCID: PMC8747204 DOI: 10.3390/polym14010131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effect of various cultivation conditions (sucrose/phosphate concentrations, aeration level) on alginate biosynthesis using the bacterial producing strain Azotobacter vinelandii 12 by the full factorial design (FFD) method and physicochemical properties (e.g., rheological properties) of the produced bacterial alginate. We demonstrated experimentally the applicability of bacterial alginate for tissue engineering (the cytotoxicity testing using mesenchymal stem cells (MSCs)). The isolated synthesis of high molecular weight (Mw) capsular alginate with a high level of acetylation (25%) was achieved by FFD method under a low sucrose concentration, an increased phosphate concentration, and a high aeration level. Testing the viscoelastic properties and cytotoxicity showed that bacterial alginate with a maximal Mw (574 kDa) formed the densest hydrogels (which demonstrated relatively low cytotoxicity for MSCs in contrast to bacterial alginate with low Mw). The obtained data have shown promising prospects in controlled biosynthesis of bacterial alginate with different physicochemical characteristics for various biomedical applications including tissue engineering.
Collapse
Affiliation(s)
- Andrei A. Dudun
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Elizaveta A. Akoulina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Vsevolod A. Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Tatiana K. Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Vera V. Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Nikita V. Belishev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Dolgor D. Khaydapova
- Department of Soil Physics and Reclamation, Soil Science Faculty, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia;
| | - Konstantin V. Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Garina A. Bonartseva
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Anton P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| |
Collapse
|
12
|
Conde-Avila V, Peña C, Pérez-Armendáriz B, Loera O, Martínez Valenzuela C, Leyva Morales JB, Jesús Bastidas Bastidas PD, Salgado-Lugo H, Ortega Martínez LD. Growth, respiratory activity and chlorpyrifos biodegradation in cultures of Azotobacter vinelandii ATCC 12837. AMB Express 2021; 11:177. [PMID: 34958440 PMCID: PMC8712287 DOI: 10.1186/s13568-021-01339-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
This study aimed to evaluate the growth, respiratory activity, and biodegradation of chlorpyrifos in cultures of Azotobacter vinelandii ATCC 12837. A strategy based on the modification of culture media and aeration conditions was carried out to increase the cell concentration of A. vinelandii, in order to favor and determine its tolerance to chlorpyrifos and its degradation ability. The culture in shaken flasks, using sucrose as a carbon source, significantly improved the growth compared to media with mannitol. When the strain was cultivated under oxygen-limited (5.5, 11.25 mmol L−1 h−1) and no-oxygen-limited conditions (22 mmol L−1 h−1), the growth parameters were not affected. In cultures in a liquid medium with chlorpyrifos, the bacteria tolerated a high pesticide concentration (500 ppm) and the growth parameters were improved even under conditions with a reduced carbon source (sucrose 2 g L−1). The strain degraded 99.6% of chlorpyrifos at 60 h of cultivation, in co-metabolism with sucrose; notably, A. vinelandii ATCC 12837 reduced by 50% the initial pesticide concentration in only 6 h (DT50). ![]()
Collapse
|
13
|
Metabolic Model of the Nitrogen-Fixing Obligate Aerobe Azotobacter vinelandii Predicts Its Adaptation to Oxygen Concentration and Metal Availability. mBio 2021; 12:e0259321. [PMID: 34903060 PMCID: PMC8686835 DOI: 10.1128/mbio.02593-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is considerable interest in promoting biological nitrogen fixation (BNF) as a mechanism to reduce the inputs of nitrogenous fertilizers in agriculture, but considerable fundamental knowledge gaps still need to be addressed. BNF is catalyzed by nitrogenase, which requires a large input of energy in the form of ATP and low potential electrons. Diazotrophs that respire aerobically have an advantage in meeting the ATP demands of BNF but face challenges in protecting nitrogenase from inactivation by oxygen. Here, we constructed a genome-scale metabolic model of the nitrogen-fixing bacterium Azotobacter vinelandii, which uses a complex respiratory protection mechanism to consume oxygen at a high rate to keep intracellular conditions microaerobic. Our model accurately predicts growth rate under high oxygen and substrate concentrations, consistent with a large electron flux directed to the respiratory protection mechanism. While a partially decoupled electron transport chain compensates for some of the energy imbalance under high-oxygen conditions, it does not account for all substrate intake, leading to increased maintenance rates. Interestingly, the respiratory protection mechanism is required for accurate predictions even when ammonia is supplemented during growth, suggesting that the respiratory protection mechanism might be a core principle of metabolism and not just used for nitrogenase protection. We have also shown that rearrangement of flux through the electron transport system allows A. vinelandii to adapt to different oxygen concentrations, metal availability, and genetic disruption, which cause an ammonia excretion phenotype. Accurately determining the energy balance in an aerobic nitrogen-fixing metabolic model is required for future engineering approaches.
Collapse
|
14
|
Ponce B, Urtuvia V, Maturana N, Peña C, Díaz-Barrera A. Increases in alginate production and transcription levels of alginate lyase (alyA1) by control of the oxygen transfer rate in Azotobacter vinelandii cultures under diazotrophic conditions. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
15
|
Díaz-Barrera A, Sanchez-Rosales F, Padilla-Córdova C, Andler R, Peña C. Molecular weight and guluronic/mannuronic ratio of alginate produced by Azotobacter vinelandii at two bioreactor scales under diazotrophic conditions. Bioprocess Biosyst Eng 2021; 44:1275-1287. [PMID: 33635396 DOI: 10.1007/s00449-021-02532-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/07/2021] [Indexed: 11/24/2022]
Abstract
Alginates can be used to elaborate hydrogels, and their properties depend on the molecular weight (MW) and the guluronic (G) and mannuronic (M) composition. In this study, the MW and G/M ratio were evaluated in cultures of Azotobacter vinelandii to 3 and 30 L scales at different oxygen transfer rates (OTRs) under diazotrophic conditions. An increase in the maximum OTR (OTRmax) improved the alginate production, reaching 3.3 ± 0.2 g L-1. In the cultures conducted to an OTR of 10.4 mmol L-1 h-1 (500 rpm), the G/M increased during the cell growth phase and decreased during the stationary phase; whereas, in the cultures at 19.2 mmol L-1 h-1 was constant throughout the cultivation. A higher alginate MW (520 ± 43 kDa) and G/M ratio (0.86 ± 0.01) were obtained in the cultures conducted at 10.4 mmol L-1 h-1. The OTR as a criterion to scale up alginate production allowed to replicate the concentration and the alginate production rate; however, it was not possible reproduce the MW and G/M ratio. Under a similar specific oxygen uptake rate (qO2) (approximately 65 mmol g-1 h-1) the alginate MW was similar (approximately 365 kDa) in both scales. The evidences revealed that the qO2 can be a parameter adequate to produce alginate MW similar in two bioreactor scales. Overall, the results have shown that the alginate composition could be affected by cellular respiration, and from a technological perspective the evidences contribute to the design process based on oxygen consumption to produce alginates defined.
Collapse
Affiliation(s)
- Alvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, 4059, Casilla, Valparaíso, Chile.
| | - Francisco Sanchez-Rosales
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, 4059, Casilla, Valparaíso, Chile.,Facultad de Ciencias Tecnológicas, Universidad Nacional de Agricultura, Carretera a Dulce Nombre de Culmí, km 212, Barrio El Espino, Catacamas, Honduras
| | - Claudio Padilla-Córdova
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, 4059, Casilla, Valparaíso, Chile
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Universidad Católica del Maule, Talca, Chile
| | - Carlos Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
16
|
Respiration in Azotobacter vinelandii and its relationship with the synthesis of biopolymers. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Campos DT, Zuñiga C, Passi A, Del Toro J, Tibocha-Bonilla JD, Zepeda A, Betenbaugh MJ, Zengler K. Modeling of nitrogen fixation and polymer production in the heterotrophic diazotroph Azotobacter vinelandii DJ. Metab Eng Commun 2020; 11:e00132. [PMID: 32551229 PMCID: PMC7292883 DOI: 10.1016/j.mec.2020.e00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 01/28/2023] Open
Abstract
Nitrogen fixation is an important metabolic process carried out by microorganisms, which converts molecular nitrogen into inorganic nitrogenous compounds such as ammonia (NH3). These nitrogenous compounds are crucial for biogeochemical cycles and for the synthesis of essential biomolecules, i.e. nucleic acids, amino acids and proteins. Azotobacter vinelandii is a bacterial non-photosynthetic model organism to study aerobic nitrogen fixation (diazotrophy) and hydrogen production. Moreover, the diazotroph can produce biopolymers like alginate and polyhydroxybutyrate (PHB) that have important industrial applications. However, many metabolic processes such as partitioning of carbon and nitrogen metabolism in A. vinelandii remain unknown to date. Genome-scale metabolic models (M-models) represent reliable tools to unravel and optimize metabolic functions at genome-scale. M-models are mathematical representations that contain information about genes, reactions, metabolites and their associations. M-models can simulate optimal reaction fluxes under a wide variety of conditions using experimentally determined constraints. Here we report on the development of a M-model of the wild type bacterium A. vinelandii DJ (iDT1278) which consists of 2,003 metabolites, 2,469 reactions, and 1,278 genes. We validated the model using high-throughput phenotypic and physiological data, testing 180 carbon sources and 95 nitrogen sources. iDT1278 was able to achieve an accuracy of 89% and 91% for growth with carbon sources and nitrogen source, respectively. This comprehensive M-model will help to comprehend metabolic processes associated with nitrogen fixation, ammonium assimilation, and production of organic nitrogen in an environmentally important microorganism. Genome-scale metabolic model of Azotobacter vinelandii DJ achives over 90% accuracy. iDT1278 is the most comprehensive model to simulate diazotrophy. Determining the most suitable culture conditions to produce polymers A. vinelandii. Constraint-based modeling unravels links among nitrogen fixation and production of organic nitrogen.
Collapse
Affiliation(s)
- Diego Tec Campos
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.,Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Cristal Zuñiga
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Anurag Passi
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - John Del Toro
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Juan D Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Alejandro Zepeda
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.,Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0403, USA
| |
Collapse
|
18
|
Improving glucose and xylose assimilation in Azotobacter vinelandii by adaptive laboratory evolution. World J Microbiol Biotechnol 2020; 36:46. [DOI: 10.1007/s11274-020-02822-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/27/2020] [Indexed: 11/25/2022]
|
19
|
García A, Castillo T, Ramos D, Ahumada-Manuel CL, Núñez C, Galindo E, Büchs J, Peña C. Molecular weight and viscosifying power of alginates produced by mutant strains of Azotobacter vinelandii under microaerophilic conditions. ACTA ACUST UNITED AC 2020; 26:e00436. [PMID: 32140445 PMCID: PMC7049565 DOI: 10.1016/j.btre.2020.e00436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/27/2022]
Abstract
The highest molecular weight of alginate (3112 kDa) was obtained with the strain AT9. Culture broths of high viscosifying power were obtained using the AT9 mutant strain. RQ value is related with the synthesis of alginate and P3HB.
Alginates are polysaccharides that are of interest in various industrial applications. This is due to the viscosifying properties of alginates, which depends on the weight-average molecular weight. The aim of the present study was to evaluate the changes in alginate quality, in terms of the viscosifying power and weight-average molecular weight of the polymer produced by Azotobacter vinelandii mutant strains in shake flasks under microaerophilic conditions. In cultures developed at oxygen transfer rate (OTR) values close to 5 mmol L−1 h−1, the highest viscosifying power (1.75 L g−1) and weight-average molecular weight (3112 ± 150 kDa) were achieved in cultures performed with the AT9 strain. These values were higher than those obtained for the alginates produced by the parental strain ATCC 9046 grown under similar OTR conditions. In contrast, the alginate produced by the GG9 and OPAlgU + exhibited a very low weight-average molecular weight and therefore a poor viscosifying power. Our results have shown that by the cultivation of AT9 strain under microaerophilic conditions it is possible to obtain a polymer having a high weight-average molecular weight and excellent viscosifying capacity. Therefore, it could be a viable strategy for producing alginates for industrial applications.
Collapse
Affiliation(s)
- Andres García
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Tania Castillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Diego Ramos
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Carlos L Ahumada-Manuel
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Jochen Büchs
- AVT - Chair of Biochemical Engineering, RWTH Aachen University,NGP2, Forckenbeckstraße 51, D-52074 Aachen, Germany
| | - Carlos Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México
| |
Collapse
|
20
|
Poly(3-hydroxybutyrate) accumulation by Azotobacter vinelandii under different oxygen transfer strategies. J Ind Microbiol Biotechnol 2019; 46:13-19. [PMID: 30357504 DOI: 10.1007/s10295-018-2090-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
Azotobacter vinelandii OP is a bacterium that produces poly(3-hydroxybutyrate) (PHB). PHB production in a stirred bioreactor, at different oxygen transfer strategies, was evaluated. By applying different oxygen contents in the inlet gas, the oxygen transfer rate (OTR) was changed under a constant agitation rate. Batch cultures were performed without dissolved oxygen tension (DOT) control (using 9% and 21% oxygen in the inlet gas) and under DOT control (4%) using gas blending. The cultures that developed without DOT control were limited by oxygen. As result of varying the oxygen content in the inlet gas, a lower OTR (4.6 mmol L-1 h-1) and specific oxygen uptake rate (11.6 mmol g-1 h-1) were obtained using 9% oxygen in the inlet gas. The use of 9% oxygen in the inlet gas was the most suitable for improving the intracellular PHB content (56 ± 6 w w-1). For the first time, PHB accumulation in A. vinelandii OP cultures, developed with different OTRs, was compared under homogeneous mixing conditions, demonstrating that bacterial respiration affects PHB synthesis. These results can be used to design new oxygen transfer strategies to produce PHB under productive conditions.
Collapse
|
21
|
The role of dissolved oxygen content as a modulator of microbial polyhydroxyalkanoate synthesis. World J Microbiol Biotechnol 2018; 34:106. [DOI: 10.1007/s11274-018-2488-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
|
22
|
García A, Ferrer P, Albiol J, Castillo T, Segura D, Peña C. Metabolic flux analysis and the NAD(P)H/NAD(P) + ratios in chemostat cultures of Azotobacter vinelandii. Microb Cell Fact 2018; 17:10. [PMID: 29357933 PMCID: PMC5776761 DOI: 10.1186/s12934-018-0860-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/15/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Azotobacter vinelandii is a bacterium that produces alginate and polyhydroxybutyrate (P3HB); however, the role of NAD(P)H/NAD(P)+ ratios on the metabolic fluxes through biosynthesis pathways of these biopolymers remains unknown. The aim of this study was to evaluate the NAD(P)H/NAD(P) + ratios and the metabolic fluxes involved in alginate and P3HB biosynthesis, under oxygen-limiting and non-limiting oxygen conditions. RESULTS The results reveal that changes in the oxygen availability have an important effect on the metabolic fluxes and intracellular NADPH/NADP+ ratio, showing that at the lowest OTR (2.4 mmol L-1 h-1), the flux through the tricarboxylic acid (TCA) cycle decreased 27.6-fold, but the flux through the P3HB biosynthesis increased 6.6-fold in contrast to the cultures without oxygen limitation (OTR = 14.6 mmol L-1 h-1). This was consistent with the increase in the level of transcription of phbB and the P3HB biosynthesis. In addition, under conditions without oxygen limitation, there was an increase in the carbon uptake rate (twofold), as well as in the flux through the pentose phosphate (PP) pathway (4.8-fold), compared to the condition of 2.4 mmol L-1 h-1. At the highest OTR condition, a decrease in the NADPH/NADP+ ratio of threefold was observed, probably as a response to the high respiration rate induced by the respiratory protection of the nitrogenase under diazotrophic conditions, correlating with a high expression of the uncoupled respiratory chain genes (ndhII and cydA) and induction of the expression of the genes encoding the nitrogenase complex (nifH). CONCLUSIONS We have demonstrated that changes in oxygen availability affect the internal redox state of the cell and carbon metabolic fluxes. This also has a strong impact on the TCA cycle and PP pathway as well as on alginate and P3HB biosynthetic fluxes.
Collapse
Affiliation(s)
- Andres García
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa Cuernavaca, Apdo. Post. 510-3, 62210, Cuernavaca, Morelos, Mexico
| | - Pau Ferrer
- Departament d'Engiyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Joan Albiol
- Departament d'Engiyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Tania Castillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa Cuernavaca, Apdo. Post. 510-3, 62210, Cuernavaca, Morelos, Mexico
| | - Daniel Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa Cuernavaca, 62210, Cuernavaca, Morelos, Mexico
| | - Carlos Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa Cuernavaca, Apdo. Post. 510-3, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
23
|
Urtuvia V, Maturana N, Acevedo F, Peña C, Díaz-Barrera A. Bacterial alginate production: an overview of its biosynthesis and potential industrial production. World J Microbiol Biotechnol 2017; 33:198. [DOI: 10.1007/s11274-017-2363-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/01/2017] [Indexed: 10/18/2022]
|
24
|
Fischer M, Gebhard F, Hammer T, Zurek C, Meurer G, Marquardt C, Hoefer D. Microbial alginate dressings show improved binding capacity for pathophysiological factors in chronic wounds compared to commercial alginate dressings of marine origin. J Biomater Appl 2017; 31:1267-1276. [DOI: 10.1177/0885328217702173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Marine alginates are well established in wound management. Compared with different modern wound dressings, marine alginates cannot prove superior effects on wound healing. Alginates from bacteria have never been studied for medical applications so far, although the microbial polymer raises expectations for improved binding of wound factors because of its unique O-acetylation. Due to its possible positive effects on wound healing, alginates from bacteria might be a superior future medical product for clinical use. To prove the binding capacity of microbial alginates to pathophysiological factors in chronic wounds, we processed microbial alginate fibres, produced from fermentation of the soil bacterium Azotobacter vinelandii ATCC 9046, into needle web dressings and compared them with commercial dressings made of marine alginate. Four dressings were assessed: Marine alginate dressings containing either ionic silver or zinc/manganese/calcium, and microbial alginate dressings with and without nanosilver. All dressings were tested in an in vitro approach for influence on chronic wound parameters such as elastase, matrix metalloproteases-2, tumour necrosis factor-α, interleukin-8, and free radical formation. Despite the alginate origin or addition of antimicrobials, all dressings were able to reduce the concentration of the proinflammatory cytokines TNF-α and IL-8. However, microbial alginate was found to bind considerable larger amounts of elastase and matrix metalloproteases-2 in contrast to the marine alginate dressings. The incorporation of zinc, silver or nanosilver into alginate fibres did not improve their binding capacity for proteases or cytokines. The addition of nanosilver slightly enhanced the antioxidant capacity of microbial alginate dressings, whereas the marine alginate dressing containing zinc/manganese/calcium was unable to inhibit the formation of free radicals. The enhanced binding affinity by microbial alginate of Azotobacter vinelandii to pathophysiological factors may be interesting to support optimal conditions for wound healing.
Collapse
Affiliation(s)
- Melissa Fischer
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Albert-Einstein University, Ulm, Germany
| | - Florian Gebhard
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Albert-Einstein University, Ulm, Germany
| | | | - Christian Zurek
- B.R.A.I.N. AG, Darmstädter Straße 34-36, Zwingenberg, Germany
| | - Guido Meurer
- B.R.A.I.N. AG, Darmstädter Straße 34-36, Zwingenberg, Germany
| | - Christoph Marquardt
- Department of General and Visceral Surgery, Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Dirk Hoefer
- Department of Hygiene, Environment and Medicine, Hohenstein Institute, Bonnigheim, Germany
| |
Collapse
|
25
|
Díaz-Barrera A, Maturana N, Pacheco-Leyva I, Martínez I, Altamirano C. Different responses in the expression of alginases, alginate polymerase and acetylation genes during alginate production by Azotobacter vinelandii under oxygen-controlled conditions. J Ind Microbiol Biotechnol 2017; 44:1041-1051. [PMID: 28246966 DOI: 10.1007/s10295-017-1929-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
Alginate production and gene expression of genes involved in alginate biosynthesis were evaluated in continuous cultures under dissolved oxygen tension (DOT) controlled conditions. Chemostat at 8% DOT showed an increase in the specific oxygen uptake rate [Formula: see text] from 10.9 to 45.3 mmol g-1 h-1 by changes in the dilution rate (D) from 0.06 to 0.10 h-1, whereas under 1% DOT the [Formula: see text] was not affected. Alginate molecular weight was not affected by DOT. However, chemostat at 1% DOT showed a downregulation up to 20-fold in genes encoding both the alginate polymerase (alg8, alg44), alginate acetylases (algV, algI) and alginate lyase AlgL. alyA1 and algE7 lyases gene expressions presented an opposite behavior by changing the DOT, suggesting that A. vinelandii can use specific depolymerases depending on the oxygen level. Overall, the DOT level have a differential effect on genes involved in alginate synthesis, thus a gene expression equilibrium determines the production of alginates of similar molecular weight under DOT controlled.
Collapse
Affiliation(s)
- Alvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Casilla, 4059, Valparaíso, Chile.
| | - Nataly Maturana
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Casilla, 4059, Valparaíso, Chile
| | - Ivette Pacheco-Leyva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Irene Martínez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Casilla, 4059, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Casilla, 4059, Valparaíso, Chile.,CREAS CONICYT Regional GORE Valparaíso R0GI1004, Av. Universidad, Curauma, Chile
| |
Collapse
|
26
|
Analysis of respiratory activity and carbon usage of a mutant of Azotobacter vinelandii impaired in poly-β-hydroxybutyrate synthesis. J Ind Microbiol Biotechnol 2016; 43:1167-74. [PMID: 27154760 DOI: 10.1007/s10295-016-1774-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
In this study, the respiratory activity and carbon usage of the mutant strain of A. vinelandii AT6, impaired in poly-β-hydroxybutyrate (PHB) production, and their relationship with the synthesis of alginate were evaluated. The alginate yield and the specific oxygen uptake rate were higher (2.5-fold and 62 %, respectively) for the AT6 strain, compared to the control strain (ATCC 9046), both in shake flasks cultures and in bioreactor, under fixed dissolved oxygen tension (1 %). In contrast, the degree of acetylation was similar in both strains. These results, together with the analysis of carbon usage (% C-mol), suggest that in the case of the AT6 strain, the flux of acetyl-CoA (precursor molecule for PHB biosynthesis and alginate acetylation) was diverted to the respiratory chain passing through the tricarboxylic acids cycle, and an important % C-mol was directed through alginate biosynthesis, up to 25.9 % and to a lesser extent, to biomass production (19.7 %).
Collapse
|
27
|
Optimisation of the use of products from the cane sugar industry for poly(3-hydroxybutyrate) production by Azohydromonas lata DSM 1123 in fed-batch cultivation. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Zhao C, Song G, Fu C, Dong Y, Xu H, Zhang H, Yu LJ. A systematic approach to expound the variations in taxane production under different dissolved oxygen conditions in Taxus chinensis cells. PLANT CELL REPORTS 2016; 35:541-559. [PMID: 26620815 DOI: 10.1007/s00299-015-1902-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/04/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Our results provide an evidence that the changes in taxane production caused by dissolved oxygen shifts could be associated with the global variations in the cell central carbon metabolism. Taxol is an important taxane synthesized by the Taxus plant. A two-stage culture of Taxus in vitro has been considered as an attractive alternative approach to produce Taxol and its precursors. To investigate the consequences of dissolved oxygen (DO) shifts for cell primary and secondary metabolism, we conducted metabolomic and transcriptomic profiling analyses under low dissolved oxygen (LDO), medium dissolved oxygen (MDO), and high dissolved oxygen (HDO) conditions in a suspension culture of Taxus chinensis cells. Under LDO, the results indicate a significant increase in the production of Taxol and its main precursors by 3.4- to 1.4-fold compared with those under MDO and HDO on 9th day. Multiple acyl taxanes (MAT) are abundant taxanes in the cells, and exhibited only a slight increase under the same conditions. Metabolomic analysis based on 209 primary metabolites indicated that several pathways in central carbon metabolism were involved, including the enhancement of the glycolysis pathway of glucose-6-phosphate to fructose-6-phosphate and pyruvate and the mevalonate pathway of terpene biosynthesis, and decline in the tricarboxylic acid pathway under LDO. These results indicate the mechanism by which related taxanes accumulate through enhancing the supplies of substrates and expression levels of hydroxylases. Excess acetyl-CoA supply induced by high oxygen stress was found to be correlated with high productivity of MAT. Our results provide an evidence that the changes in taxane production caused by DO shifts could be associated with the global variations in the cell central carbon metabolism.
Collapse
Affiliation(s)
- Chunfang Zhao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guanghao Song
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chunhua Fu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanshan Dong
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hang Xu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hua Zhang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Long Jiang Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
29
|
Alginate Biosynthesis inAzotobacter vinelandii: Overview of Molecular Mechanisms in Connection with the Oxygen Availability. INT J POLYM SCI 2016. [DOI: 10.1155/2016/2062360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Gram-negative bacteriumAzotobacter vinelandiican synthetize the biopolymer alginate that has material properties appropriate for plenty of applications in industry as well as in medicine. In order to settle the foundation for improving alginate production without compromising its quality, a better understanding of the polymer biosynthesis and the mechanism of regulation during fermentation processes is necessary. This knowledge is crucial for the development of novel production strategies. Here, we highlight the key aspects of alginate biosynthesis that can lead to producing an alginate with specific material properties with particular focus on the role of oxygen availability linked with the molecular mechanisms involved in the alginate production.
Collapse
|
30
|
Díaz-Barrera A, Gutierrez J, Martínez F, Altamirano C. Production of alginate by Azotobacter vinelandii grown at two bioreactor scales under oxygen-limited conditions. Bioprocess Biosyst Eng 2013; 37:1133-40. [PMID: 24173209 DOI: 10.1007/s00449-013-1084-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
Abstract
The oxygen transfer rate (OTR) was evaluated as a scale-up criterion for alginate production in 3- and 14-L stirred fermentors. Batch cultures were performed at different agitation rates (200, 300, and 600 rpm) and airflow rates (0.25, 0.5, and 1 vvm), resulting in different maximum OTR levels (OTRmax). Although the two reactors had a similar OTRmax (19 mmol L(-1) h(-1)) and produced the same alginate concentration (3.8 g L(-1)), during the cell growth period the maximum molecular weight of the alginate was 1,250 kDa in the 3-L stirred fermentor and 590 kDa in 14-L stirred fermentor. The results showed for the first time the evolution of the molecular weight of alginate and OTR profiles for two different scales of stirred fermentors. There was a different maximum specific oxygen uptake rate between the two fermenters, reaching 8.3 mmol g(-1) h(-1) in 3-L bioreactor and 10.6 mmol g(-1) h(-1) in 14-L bioreactor, which could explain the different molecular weights observed. These findings open the possibility of using [Formula: see text] instead of OTRmax as a scaling criterion to produce polymers with similar molecular weights during fermentation.
Collapse
Affiliation(s)
- Alvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, 4059, Casilla, Valparaíso, Chile,
| | | | | | | |
Collapse
|