1
|
Dashtbin R, Mahmoudi N, Besharati H, Lalevic B. Identification of sulfur-oxidizing bacteria from fishponds and their performance to remove hydrogen sulfide under aquarium conditions. Braz J Microbiol 2023; 54:3163-3172. [PMID: 37819610 PMCID: PMC10689329 DOI: 10.1007/s42770-023-01128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023] Open
Abstract
Hydrogen sulfide is a highly toxic gas that causes many economic losses in aquaculture ponds. The application of sulfur-oxidizing bacteria (SOB) to remove hydrogen sulfide is an eco-friendly approach. This study aimed to isolate and identify the most efficient SOBs from the sediment of warm-water fish farms. Enrichment and isolation were performed in three different culture media (Starkey, Postgate, and H-3) based on both mineral and organic carbon. Overall, 27 isolates (14 autotrophic and 13 heterotrophic isolates) were purified based on colony and cell morphology differences. Initial screening was performed based on pH decrease. For final screening, the isolates were assessed based on their efficacy in thiosulfate oxidation and the sulfate production on Starkey liquid medium. Among isolated strains, 3 strains of Iran 2 (FH-13), Iran 3 (FH-21), and Iran 1 (FH-14) that belonged to Thiobacillus thioparus species (identified by 16s rRNA) showed the highest ability in thiosulfate oxidation (413.21, 1362.50, and 4188.03 mg/L for 14 days) and the highest sulfate production (3350, 2075, and 1600 mg/L). In the final phase, the performance of these strains under aquarium conditions showed that Iran 1 and Iran 2 had the highest ability in sulfur oxidation. In conclusion, Iran 1 and 2 strains can be used as effective SOB to remove hydrogen sulfide in fish farms. It is very important to evaluate strains in an appropriate strategy using a combination of different criteria to ensure optimal performance of SOB in farm conditions.
Collapse
Affiliation(s)
- Rana Dashtbin
- Department of Aquaculture, Faculty of Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nemat Mahmoudi
- Department of Aquaculture, Faculty of Marine Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Besharati
- Agricultural Research, Education and Extension Organization (AREEO), Soil and Water Research Institute, Karaj, Iran
| | - Blažo Lalevic
- Faculty of Agriculture, Belgrade University, Belgrade, Serbia
| |
Collapse
|
2
|
Farrokh P, Sheikhpour M, Kasaeian A, Asadi H, Bavandi R. Cyanobacteria as an eco-friendly resource for biofuel production: A critical review. Biotechnol Prog 2019; 35:e2835. [PMID: 31063628 DOI: 10.1002/btpr.2835] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms which can be found in various environmental habitats. These photosynthetic bacteria are considered as promising feedstock for the production of the third- and the fourth-generation biofuels. The main subject of this review is highlighting the significant aspects of the biofuel production from cyanobacteria. The most recent investigations about the extraction or separation of the bio-oil from cyanobacteria are also adduced in the present review. Moreover, the genetic engineering of cyanobacteria for improving biofuel production and the impact of bioinformatics studies on the designing better-engineered strains are mentioned. The large-scale biofuel production is challenging, so the economic considerations to provide inexpensive biofuels are also cited. It seems that the future of biofuels is strongly dependent to the following items; understanding the metabolic pathways of the cyanobacterial species, progression in the construction of the engineered cyanobacteria, and inexpensive large-scale cultivation of them.
Collapse
Affiliation(s)
- Parisa Farrokh
- Department of cell and molecular biology, School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Alibakhsh Kasaeian
- Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Hassan Asadi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Roya Bavandi
- Branch-Marine Science and Technology Faculty, Islamic Azad University North Tehran, Tehran, Iran
| |
Collapse
|
3
|
Ghaemi A, Abdi K, Javadi S, Shehneh MZ, Yazdian F, Omidi M, Rashedi H, Haghiralsadat BF, Asayeshnaeini O. Novel microfluidic graphene oxide-protein amperometric biosensor for detecting sulfur compounds. Biotechnol Appl Biochem 2019; 66:353-360. [PMID: 30667098 DOI: 10.1002/bab.1731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/10/2018] [Indexed: 11/05/2022]
Abstract
Sulfur compounds are essential for many industries and organisms; however, they cause serious respiratory problems in human beings. Therefore, determination of sulfur concentration is of paramount importance. The research approach in the field of detecting contaminants has led to smaller systems that provide faster and more effective ways for diagnosis purposes. In this study, a novel portable amperometric graphene oxide-protein biosensor platform is investigated. The main characteristic of this structure is the implementation of a microfluidic configuration. With albumin metalloprotein as the biorecognition element, graphene oxide was synthesized and characterized by transmission electron microscopy and Fourier-transform infrared spectroscopy (FTIR). Albumin protein was stabilized on the surface of graphene oxide by the application of the N-(3-dimethylamionpropyl)-N-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide method. The stabilization was confirmed by FTIR and electrochemistry analyses. The calibration curve of sulfur concentration was determined. When the graphene oxide-protein complex was stabilized by nephion on the surface of the microfluidic system, the response time reduced to 50 Sec, which is a relatively faster response among the similar studies and validated the significant effect of the microfluidic system. The nanosystem had an optimized pH of 7.4 and exhibited high sensitivity in determining sulfide. The results confirm that the portable graphene oxide-protein nanosystem has a fast and accurate response in detecting sulfide.
Collapse
Affiliation(s)
- Amirhossein Ghaemi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Kaveh Abdi
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Shohreh Javadi
- Chemical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Zare Shehneh
- Genetic department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Meisam Omidi
- Marquette University School of Dentistry, Milwaukee, WI, USA.,Protein Research Centre, Shahid Beheshti University, GC, Velenjak, Tehran, Iran
| | - Hamid Rashedi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Bibi Fatemeh Haghiralsadat
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Asayeshnaeini
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Liu Z, Ma H, Sun H, Gao R, Liu H, Wang X, Xu P, Xun L. Nanoporous gold-based microbial biosensor for direct determination of sulfide. Biosens Bioelectron 2017. [DOI: 10.1016/j.bios.2017.06.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Li L, Wang T, Sun Y, Wang P, Yvette B, Meng J, Li Q, Zhou Y. Identify biosorption effects of Thiobacillus towards perfluorooctanoic acid (PFOA): Pilot study from field to laboratory. CHEMOSPHERE 2017; 171:31-39. [PMID: 28002764 DOI: 10.1016/j.chemosphere.2016.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
The concentration of Perfluoroalkyl acids (PFAAs) and the bacterial community composition along the Xiaoqing River were explored with HPLC-MS/MS and Illumina high-throughput sequencing in present study. The results showed that perfluorooctanoic acid (PFOA) was the predominant PFAAs in all sediment samples, and high level of PFOA could lead to an evident increase in the abundance of Thiobacillus. Thiobacillus was identified with the survival ability in high concentrations of PFOA accordingly. Therefore, Thiobacillus thioparus and Thiobacillus denitrificans were selected as receptors to design indoor biosorption experiment. The growth curves under different PFOA concentrations and residual rates of PFOA in the processes of cultivation were analyzed. The results showed that upwards concentrations of PFOA below 5000 ng/L led to an obvious increase in the growth rate of T. thioparus. Whereas PFOA promoted the growth of T. denitrificans in a relatively limited range of concentration, and the effect was not obvious. The addition of different concentrations of PFOA had no apparent effects on pH values in the media of both T. thioparus and T. denitrificans. The concentrations of PFOA in liquid media reduced after the process of bacteria culturing. The removal rates of T. thioparus and T. denitrificans to PFOA were 21.1-26.8% and 13.5-18.4%, respectively. The current findings indicated that T. thioparus could play a significant role as potential biosorbent with the ability to eliminate PFOA effectively in aquatic environment, which would provide novel information for PFOA ecological decontamination and remediation.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yajun Sun
- College of Biological Sciences and Technology, Beijing Forest University, Beijing 100083, China
| | - Pei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baninla Yvette
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qifeng Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqiao Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Zhao YG, Zheng Y, Tian W, Bai J, Feng G, Guo L, Gao M. Enrichment and immobilization of sulfide removal microbiota applied for environmental biological remediation of aquaculture area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:307-313. [PMID: 27105167 DOI: 10.1016/j.envpol.2016.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
To remove sulfide in the deteriorating aquaculture sediment and water, sulfide-oxidizing microbiota was enriched from Jiaozhou Bay, China, by using sulfide-rich medium. Composition and structure of microbial communities in the enrichments were investigated by 16S rDNA molecular biotechniques. Results showed that microbial community structure continuously shifted and the abundance of sulfate reducing bacteria, i.e., Desulfobacterium, Desulfococcus and Desulfobacca apparently declined. Several halophile genera, Vibrio, Marinobacter, Pseudomonas, Prochlorococcus, Pediococcus and Thiobacillus predominated finally in the microbiota. The enriched microbiota was capable of removing a maximum of 1000 mg/L sulfide within 12 h with 10% inoculum at pH 7.0, 20-30 °C. After immobilized, the microbiota presented excellent resistance to impact and could completely remove 600 mg/L sulfide in 12 h. Moreover, the immobilized microbiota recovered well even recycled for five times. In conclusion, the immobilized sulfide-removing microbiota showed a quite promising application for biological restoring of sulfide-rich aquaculture environment.
Collapse
Affiliation(s)
- Yang-Guo Zhao
- Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yu Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jie Bai
- Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Gong Feng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
7
|
Recent advances in electrochemical detection of important sulfhydryl-containing compounds. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1757-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Vosoughi A, Yazdian F, Amoabediny G, Hakim M. Investigating the effect of design parameters on the response time of a highly sensitive microbial hydrogen sulfide biosensor based on oxygen consumption. Biosens Bioelectron 2015; 70:106-14. [DOI: 10.1016/j.bios.2015.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
|
9
|
Ebrahimi E, Yazdian F, Amoabediny G, Shariati MR, Janfada B, Saber M. A microbial biosensor for hydrogen sulfide monitoring based on potentiometry. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
poor NZM, Baniasadi L, Omidi M, Amoabediny G, Yazdian F, Attar H, Heydarzadeh A, Zarami ASH, Sheikhha MH. An inhibitory enzyme electrode for hydrogen sulfide detection. Enzyme Microb Technol 2014; 63:7-12. [DOI: 10.1016/j.enzmictec.2014.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 04/25/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
|