1
|
Välimets S, Sun P, Virginia LJ, van Erven G, Sanders MG, Kabel MA, Peterbauer C. Characterization of Amycolatopsis 75iv2 dye-decolorizing peroxidase on O-glycosides. Appl Environ Microbiol 2024; 90:e0020524. [PMID: 38625022 PMCID: PMC11107159 DOI: 10.1128/aem.00205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Dye-decolorizing peroxidases are heme peroxidases with a broad range of substrate specificity. Their physiological function is still largely unknown, but a role in the depolymerization of plant cell wall polymers has been widely proposed. Here, a new expression system for bacterial dye-decolorizing peroxidases as well as the activity with previously unexplored plant molecules are reported. The dye-decolorizing peroxidase from Amycolatopsis 75iv2 (DyP2) was heterologously produced in the Gram-positive bacterium Streptomyces lividans TK24 in both intracellular and extracellular forms without external heme supplementation. The enzyme was tested on a series of O-glycosides, which are plant secondary metabolites with a phenyl glycosidic linkage. O-glycosides are of great interest, both for studying the compounds themselves and as potential models for studying specific lignin-carbohydrate complexes. The primary DyP reaction products of salicin, arbutin, fraxin, naringin, rutin, and gossypin were oxidatively coupled oligomers. A cleavage of the glycone moiety upon radical polymerization was observed when using arbutin, fraxin, rutin, and gossypin as substrates. The amount of released glucose from arbutin and fraxin reached 23% and 3% of the total substrate, respectively. The proposed mechanism suggests a destabilization of the ether linkage due to the localization of the radical in the para position. In addition, DyP2 was tested on complex lignocellulosic materials such as wheat straw, spruce, willow, and purified water-soluble lignin fractions, but no remarkable changes in the carbohydrate profile were observed, despite obvious oxidative activity. The exact action of DyP2 on such lignin-carbohydrate complexes therefore remains elusive. IMPORTANCE Peroxidases require correct incorporation of the heme cofactor for activity. Heterologous overproduction of peroxidases often results in an inactive enzyme due to insufficient heme synthesis by the host organism. Therefore, peroxidases are incubated with excess heme during or after purification to reconstitute activity. S. lividans as a production host can produce fully active peroxidases both intracellularly and extracellularly without the need for heme supplementation. This reduces the number of downstream processing steps and is beneficial for more sustainable production of industrially relevant enzymes. Moreover, this research has extended the scope of dye-decolorizing peroxidase applications by studying naturally relevant plant secondary metabolites and analyzing the formed products. A previously overlooked artifact of radical polymerization leading to the release of the glycosyl moiety was revealed, shedding light on the mechanism of DyP peroxidases. The key aspect is the continuous addition, rather than the more common approach of a single addition, of the cosubstrate, hydrogen peroxide. This continuous addition allows the peroxidase to complete a high number of turnovers without self-oxidation.
Collapse
Affiliation(s)
- Silja Välimets
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse, Vienna, Austria
- Doctoral Programme Biomolecular Technology of Proteins (BioToP), BOKU, Muthgasse, Vienna, Austria
| | - Peicheng Sun
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Ludovika Jessica Virginia
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse, Vienna, Austria
- Doctoral Programme Biomolecular Technology of Proteins (BioToP), BOKU, Muthgasse, Vienna, Austria
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Mark G. Sanders
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Clemens Peterbauer
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse, Vienna, Austria
- Doctoral Programme Biomolecular Technology of Proteins (BioToP), BOKU, Muthgasse, Vienna, Austria
| |
Collapse
|
2
|
Sun Z, Ren M, Shan B, Yang Q, Zhao Z, Liu X, Yin L. One-pot synthesis of dynamically cross-linked polymers for serum-resistant nucleic acid delivery. Biomater Sci 2023; 11:5653-5662. [PMID: 37431292 DOI: 10.1039/d3bm00685a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Cationic polymers used for nucleic acid delivery often suffer from complicated syntheses, undesired intracellular cargo release and low serum stability. Herein, a series of ternary polymers were synthesized via facile green chemistry to achieve efficient plasmid DNA and mRNA delivery in serum. During the one-pot synthesis of the ternary polymer, acetylphenylboric acid (APBA), polyphenol and low-molecular weight polyethyleneimine (PEI 1.8k) were dynamically cross-linked with each other due to formation of an imine between PEI 1.8k and APBA and formation of a boronate ester between APBA and polyphenol. Series of polyphenols, including ellagic acid (EA), epigallocatechin gallate (EGCG), nordihydroguaiaretic acid (NDGA), rutin (RT) and rosmarinic acid (RA), and APBA molecules, including 2-acetylphenylboric acid (2-APBA), 3-acetylphenylboric acid (3-APBA) and 4-acetylphenylboric acid (4-APBA), were screened and the best-performing ternary polymer, 2-PEI-RT, constructed from RT and 2-APBA, was identified. The ternary polymer featured efficient DNA condensation to favor cellular internalization, and the acidic environment in endolysosomes triggered effective degradation of the polymer to promote cargo release. Thus, 2-PEI-RT showed robust plasmid DNA transfection efficiencies in various tumor cells in serum, outperforming the commercial reagent PEI 25k by 1-3 orders of magnitude. Moreover, 2-PEI-RT mediated efficient cytosolic delivery of Cas9-mRNA/sgRNA to enable pronounced CRISPR-Cas9 genome editing in vitro. Such a facile and robust platform holds great potential for non-viral nucleic acid delivery and gene therapy.
Collapse
Affiliation(s)
- Zhisong Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Mengyao Ren
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Bingchen Shan
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Qiang Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Xun Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou215004, China.
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Joo YH, Chung N, Lee YK. Anti-obesity effect of fresh and browned Magnolia denudata flowers in a high fat diet murine model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
4
|
Pivec T, Kargl R, Maver U, Bračič M, Elschner T, Žagar E, Gradišnik L, Kleinschek KS. Chemical Structure-Antioxidant Activity Relationship of Water-Based Enzymatic Polymerized Rutin and Its Wound Healing Potential. Polymers (Basel) 2019; 11:E1566. [PMID: 31561552 PMCID: PMC6835416 DOI: 10.3390/polym11101566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 11/25/2022] Open
Abstract
The flavonoid rutin (RU) is a known antioxidant substance of plant origin. Its potential application in pharmaceutical and cosmetic fields is, however, limited, due to its low water solubility. This limitation can be overcome by polymerization of the phenolic RU into polyrutin (PR). In this work, an enzymatic polymerization of RU was performed in water, without the addition of organic solvents. Further, the chemical structure of PR was investigated using 1H NMR, and FTIR spectroscopy. Size-exclusion chromatography (SEC) was used to determine the molecular weight of PR, while its acid/base character was studied by potentiometric charge titrations. Additionally, this work investigated the antioxidant and free radical scavenging potential of PR with respect to its chemical structure, based on its ability to (i) scavenge non biological stable free radicals (ABTS), (ii) scavenge biologically important oxidants, such as O2•, NO•, and OH•, and (iii) chelate Fe2+. The influence of PR on fibroblast and HaCaT cell viability was evaluated to confirm the applicability of water soluble PR for wound healing application.
Collapse
Affiliation(s)
- Tanja Pivec
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia.
| | - Rupert Kargl
- Institute of Paper, Pulp and Fibre Technology (IPZ) Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - Uroš Maver
- Institute for Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia.
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia.
| | - Matej Bračič
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia.
| | - Thomas Elschner
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia.
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry Slovenia, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Lidija Gradišnik
- Institute for Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia.
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia.
| | - Karin Stana Kleinschek
- Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia.
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
6
|
Song F, Tang M, Wu Q, Shen X, Wang H, Chen H, Zhao S. Anti-adipogenic Effects of Polyphenol Extracts of Areca Flower Tea on 3T3-L1 Preadipocytes. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Fei Song
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences
| | - MinMin Tang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences
| | - QiuSheng Wu
- College of Food Science and Technology, Huazhong Agricultural University
| | - XiaoJun Shen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences
| | - Hui Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences
| | - Hua Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences
| | - SongLin Zhao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences
| |
Collapse
|
7
|
Wei Y, Chen P, Ling T, Wang Y, Dong R, Zhang C, Zhang L, Han M, Wang D, Wan X, Zhang J. Certain (−)-epigallocatechin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG. Food Chem 2016; 204:218-226. [DOI: 10.1016/j.foodchem.2016.02.134] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/05/2016] [Accepted: 02/21/2016] [Indexed: 11/30/2022]
|
8
|
Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem Rev 2016; 116:2307-413. [PMID: 26791937 DOI: 10.1021/acs.chemrev.5b00472] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.
Collapse
Affiliation(s)
- Shin-ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shiro Kobayashi
- Center for Fiber & Textile Science, Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|