1
|
Zhang H, Secundo F, Sun J, Mao X. Advances in enzyme biocatalysis for the preparation of functional lipids. Biotechnol Adv 2022; 61:108036. [PMID: 36130694 DOI: 10.1016/j.biotechadv.2022.108036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Functional lipids, mainly ω-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3), are known to have a variety of health benefits. Lipases and phospholipases are widely used to prepare different forms of structured lipids, since biocatalytic methods can be carried out under mild conditions, preserving the quality of the products. On the other hand, many processes still are conducted at high temperatures and with organic solvents, which are conditions unfavorable for the production of nutritional products. This article gives an updated overview of enzyme biocatalysis methods for the preparation of different derivatives containing n-3 PUFAs, including specific reactions, enzyme immobilization research for high-efficiency catalysis, and enzyme engineering technologies (higher selectivity, stability, and activity). Furthermore, advanced control strategies of biocatalytic processes and reactors are presented. The future prospect and opportunities for marine functional lipids are also discussed. Therefore, the obtainment of enzymes endowed with superior properties and the development of optimized processes, still have to be pursued to achieve greener bio-catalyzed processes.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
2
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Tuning Immobilized Commercial Lipase Preparations Features by Simple Treatment with Metallic Phosphate Salts. Molecules 2022; 27:molecules27144486. [PMID: 35889359 PMCID: PMC9320038 DOI: 10.3390/molecules27144486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Four commercial immobilized lipases biocatalysts have been submitted to modifications with different metal (zinc, cobalt or copper) phosphates to check the effects of this modification on enzyme features. The lipase preparations were Lipozyme®TL (TLL-IM) (lipase from Thermomyces lanuginose), Lipozyme®435 (L435) (lipase B from Candida antarctica), Lipozyme®RM (RML-IM), and LipuraSelect (LS-IM) (both from lipase from Rhizomucor miehei). The modifications greatly altered enzyme specificity, increasing the activity versus some substrates (e.g., TLL-IM modified with zinc phosphate in hydrolysis of triacetin) while decreasing the activity versus other substrates (the same preparation in activity versus R- or S- methyl mandelate). Enantiospecificity was also drastically altered after these modifications, e.g., LS-IM increased the activity versus the R isomer while decreasing the activity versus the S isomer when treated with copper phosphate. Regarding the enzyme stability, it was significantly improved using octyl-agarose-lipases. Using all these commercial biocatalysts, no significant positive effects were found; in fact, a decrease in enzyme stability was usually detected. The results point towards the possibility of a battery of biocatalysts, including many different metal phosphates and immobilization protocols, being a good opportunity to tune enzyme features, increasing the possibilities of having biocatalysts that may be suitable for a specific process.
Collapse
|
4
|
Amini Y, Shahedi M, Habibi Z, Yousefi M, Ashjari M, Mohammadi M. A multi-component reaction for covalent immobilization of lipases on amine-functionalized magnetic nanoparticles: production of biodiesel from waste cooking oil. BIORESOUR BIOPROCESS 2022; 9:60. [PMID: 38647849 PMCID: PMC10991503 DOI: 10.1186/s40643-022-00552-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
A new approach was used for the immobilization of Thermomyces lanuginosus lipase (TLL), Candida antarctica lipase B (CALB), and Rhizomucor miehei lipase (RML) on amine-functionalized magnetic nanoparticles (Fe3O4@SiO2-NH2) via a multi-component reaction route (using cyclohexyl isocyanide). The used method offered a single-step and very fast process for covalent attachment of the lipases under extremely mild reaction conditions (25 °C, water, and pH 7.0). Rapid and simple immobilization of 20 mg of RML, TLL, and CALB on 1 g of the support produced 100%, 98.5%, and 99.2% immobilization yields, respectively, after 2 h of incubation. The immobilized derivatives were then used for biodiesel production from waste cooking oil. Response surface methodology (RSM) in combination with central composite rotatable design (CCRD) was employed to evaluate and optimize the biodiesel production. The effect of some parameters such as catalyst amount, reaction temperature, methanol concentration, water content for TLL or water-adsorbent for RML and CALB, and ratio of t-butanol (wt%) were investigated on the fatty acid methyl esters (FAME) yield.
Collapse
Affiliation(s)
- Yalda Amini
- Department of Organic Chemistry and Oil, Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Mansour Shahedi
- Department of Organic Chemistry and Oil, Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Zohreh Habibi
- Department of Organic Chemistry and Oil, Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran.
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Maryam Ashjari
- Department of Organic Chemistry and Oil, Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehdi Mohammadi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
5
|
Ahrari F, Yousefi M, Habibi Z, Mohammadi M. Application of undecanedicarboxylic acid to prepare cross-linked enzymes (CLEs) of Rhizomucor miehei lipase (RML); Selective enrichment of polyunsaturated fatty acids. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Sena RO, Carneiro C, Moura MVH, Brêda GC, Pinto MCC, Fé LXSGM, Fernandez-Lafuente R, Manoel EA, Almeida RV, Freire DMG, Cipolatti EP. Application of Rhizomucor miehei lipase-displaying Pichia pastoris whole cell for biodiesel production using agro-industrial residuals as substrate. Int J Biol Macromol 2021; 189:734-743. [PMID: 34455007 DOI: 10.1016/j.ijbiomac.2021.08.173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/19/2022]
Abstract
This work aimed the application of a new biocatalyst for biodiesel production from residual agro-industrial fatty acids. A recombinant Pichia pastoris displaying lipase from Rhizomucor miehei (RML) on the cell surface, using the PIR-1 anchor system, were prepared using glycerol as the carbon source. The biocatalyst, named RML-PIR1 showed optimum temperature of 45 °C (74.0 U/L). The stability tests resulted in t1/2 of 3.49 and 2.15 h at 40 and 45 °C, respectively. RML-PIR1 was applied in esterification reactions using industrial co-products as substrates, palm fatty acid distillate (PFAD) and soybean fatty acid distillate (SFAD). The highest productivity was observed for SFAD after 48 h presenting 79.1% of conversion using only 10% of biocatalyst and free-solvent system. This is about ca. eight times higher than commercial free RML in the same conditions. The stabilizing agents study revealed that the treatment using glutaraldehyde (GA) and poly(ethylene glycol) (PEG) enabled increased stability and reuse of biocatalyst. It was observed by SEM analysis that the treatment modified the cell morphology. RML-PIR1-GA presented 87.9% of the initial activity after 6 reuses, whilst the activity of unmodified RML-PIR decreased by 40% after the first use. These results were superior to those obtained in the literature, making this new biocatalyst promising for biotechnological applications, such as the production of biofuels on a large scale.
Collapse
Affiliation(s)
- Raphael Oliveira Sena
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Candida Carneiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Marcelo Victor Holanda Moura
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil; SENAI Innovation Institute for Biosynthetics and Fibers, SENAI CETIQT, Rio de Janeiro, Brazil
| | - Gabriela Coelho Brêda
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Martina C C Pinto
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil; Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, 68502, Rio de Janeiro, RJ 21941-972, Brazil
| | | | - Roberto Fernandez-Lafuente
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Evelin Andrade Manoel
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, 21941-170 Rio de Janeiro, Brazil
| | - Rodrigo Volcan Almeida
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil.
| | - Denise Maria Guimarães Freire
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil.
| | - Eliane Pereira Cipolatti
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, 21941-170 Rio de Janeiro, Brazil; Department of Biochemical Process Technology, Rio de Janeiro State University, São Francisco Xavier, 524 Maracanã, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Moreira KDS, de Oliveira ALB, Júnior LSDM, Monteiro RRC, da Rocha TN, Menezes FL, Fechine LMUD, Denardin JC, Michea S, Freire RM, Fechine PBA, Souza MCM, Dos Santos JCS. Lipase From Rhizomucor miehei Immobilized on Magnetic Nanoparticles: Performance in Fatty Acid Ethyl Ester (FAEE) Optimized Production by the Taguchi Method. Front Bioeng Biotechnol 2020; 8:693. [PMID: 32695765 PMCID: PMC7338345 DOI: 10.3389/fbioe.2020.00693] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
In this communication, it was evaluated the production of fatty acid ethyl ester (FAAE) from the free fatty acids of babassu oil catalyzed by lipase from Rhizomucor miehei (RML) immobilized on magnetic nanoparticles (MNP) coated with 3-aminopropyltriethoxysilane (APTES), Fe3O4@APTES-RML or RML-MNP for short. MNPs were prepared by co-precipitation coated with 3-aminopropyltriethoxysilane and used as a support to immobilize RML (immobilization yield: 94.7 ± 1.0%; biocatalyst activity: 341.3 ± 1.2 Up–NPB/g), which were also activated with glutaraldehyde and then used to immobilize RML (immobilization yield: 91.9 ± 0.2%; biocatalyst activity: 199.6 ± 3.5 Up–NPB/g). RML-MNP was characterized by X-Ray Powder Diffraction (XRPD), Fourier Transform-Infrared (FTIR) spectroscopy and Scanning Electron Microscope (SEM), proving the incorporation and immobilization of RML on the APTES matrix. In addition, the immobilized biocatalyst presented at 60°C a half-life 16–19 times greater than that of the soluble lipase in the pH range 5–10. RML and RML-MNP showed higher activity at pH 7; the immobilized enzyme was more active than the free enzyme in the pH range (5–10) analyzed. For the production of fatty acid ethyl ester, under optimal conditions [40°C, 6 h, 1:1 (FFAs/alcohol)] determined by the Taguchi method, it was possible to obtain conversion of 81.7 ± 0.7% using 5% of RML-MNP.
Collapse
Affiliation(s)
- Katerine da S Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Brazil
| | - André L B de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Brazil
| | - Lourembergue S de M Júnior
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Brazil
| | - Rodolpho R C Monteiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Brazil
| | - Thays N da Rocha
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Brazil
| | - Fernando L Menezes
- Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physic-chemistry, Federal University of Ceará - UFC, Fortaleza, Brazil
| | - Lillian M U D Fechine
- Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physic-chemistry, Federal University of Ceará - UFC, Fortaleza, Brazil
| | - Juliano C Denardin
- Departamento de Física/Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Sebastian Michea
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Rafael M Freire
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Pierre B A Fechine
- Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physic-chemistry, Federal University of Ceará - UFC, Fortaleza, Brazil
| | - Maria C M Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Brazil
| | - José C S Dos Santos
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Brazil.,Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Brazil
| |
Collapse
|
8
|
Fine Modulation of the Catalytic Properties of Rhizomucor miehei Lipase Driven by Different Immobilization Strategies for the Selective Hydrolysis of Fish Oil. Molecules 2020; 25:molecules25030545. [PMID: 32012738 PMCID: PMC7037125 DOI: 10.3390/molecules25030545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022] Open
Abstract
Functional properties of each enzyme strictly depend on immobilization protocol used for linking enzyme and carrier. Different strategies were applied to prepare the immobilized derivatives of Rhizomucor miehei lipase (RML) and chemically aminated RML (NH2-RML). Both RML and NH2-RML forms were covalently immobilized on glyoxyl sepharose (Gx-RML and Gx-NH2-RML), glyoxyl sepharose dithiothreitol (Gx-DTT-RML and Gx-DTT-NH2-RML), activated sepharose with cyanogen bromide (CNBr-RML and CNBr-NH2-RML) and heterofunctional epoxy support partially modified with iminodiacetic acid (epoxy-IDA-RML and epoxy-IDA-NH2-RML). Immobilization varied from 11% up to 88% yields producing specific activities ranging from 0.5 up to 1.9 UI/mg. Great improvement in thermal stability for Gx-DTT-NH2-RML and epoxy-IDA-NH2-RML derivatives was obtained by retaining 49% and 37% of their initial activities at 70 °C, respectively. The regioselectivity of each derivative was also examined in hydrolysis of fish oil at three different conditions. All the derivatives were selective between cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) in favor of EPA. The highest selectivity (32.9 folds) was observed for epoxy-IDA-NH2-RML derivative in the hydrolysis reaction performed at pH 5 and 4 °C. Recyclability study showed good capability of the immobilized biocatalysts to be used repeatedly, retaining 50-91% of their initial activities after five cycles of the reaction.
Collapse
|
9
|
Yu D, Yu C, Wang T, Chen J, Zhang X, Wang L, Qin L, Wu F. Study on the Deacidification of Rice Bran Oil Esterification by Magnetic Immobilized Lipase. Catal Letters 2019. [DOI: 10.1007/s10562-019-02939-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Rigi G, Ghaedmohammadi S, Ahmadian G. A comprehensive review on staphylococcal protein A (SpA): Its production and applications. Biotechnol Appl Biochem 2019; 66:454-464. [PMID: 30869160 DOI: 10.1002/bab.1742] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023]
Abstract
The Staphylococcus aureus protein A (SpA) can be obtained through the culture of wild-type S. aureus and also as a recombinant protein in safe bacterial hosts. Several methods have been used to purify SpA among which ion-exchange chromatography, affinity chromatography, gel filtration, and per aqueous liquid chromatography (PALC) are common. SpA has a wide range of biochemical, biotechnological, and medical applications and is most commonly used in test methods such as immunoprecipitation, enzyme-linked immunosorbent assay, and Western blotting. SpA has also been widely utilized in pharmaceutical applications to bind to immune complexes and serum immunoglobulins. SpA also directly binds to the B-cells preventing initiation of infectious diseases as well as having a role in the development of various autoimmune diseases. This review considers different applications of SpA in biotechnology and its novel clinical application for effective treatment of autoimmune diseases. It also discusses various strategies for expression and purification of the SpA including types of column chromatography that are commonly used in protein purification and developing SpA surface display technologies. Finally, this review highlights the potential and novel applications of SpA immobilization, SpA typing, protein engineering for further development of immunological and biochemical research, and also application of SpA as a diagnostic biosensor.
Collapse
Affiliation(s)
- Garshasb Rigi
- Department of Genetics, Faculty of Basic Science, Shahrekord University, Shahrekord, 881 863 4141, Iran.,Department of Industrial Biotechnology, Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Samira Ghaedmohammadi
- Department of Cellular and Molecular Biology, Estahban Higher Education Center, Estahban, Iran
| | - Gholamreza Ahmadian
- Associate Professor, Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
11
|
Enhanced Performance of Rhizopus oryzae Lipase by Reasonable Immobilization on Magnetic Nanoparticles and Its Application in Synthesis 1,3-Diacyglycerol. Appl Biochem Biotechnol 2019; 188:677-689. [DOI: 10.1007/s12010-018-02947-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022]
|
12
|
Zhong N, Chen W, Liu L, Chen H. Immobilization of Rhizomucor miehei lipase onto the organic functionalized SBA-15: Their enzymatic properties and glycerolysis efficiencies for diacylglycerols production. Food Chem 2019; 271:739-746. [DOI: 10.1016/j.foodchem.2018.07.185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/08/2018] [Accepted: 07/25/2018] [Indexed: 01/16/2023]
|
13
|
Yildirim D, Baran E, Ates S, Yazici B, Tukel SS. Improvement of activity and stability of Rhizomucor miehei lipase by immobilization on nanoporous aluminium oxide and potassium sulfate microcrystals and their applications in the synthesis of aroma esters. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1530766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Deniz Yildirim
- Vocational School of Ceyhan, University of Cukurova, Adana, Turkey
| | - Evrim Baran
- Faculty of Engineering and Architecture, Department of Mechanical Engineering, University of Kilis 7 Aralık, Kilis, Turkey
- Advanced Technology Application and Research Center (ATARC), University of Kilis 7 Aralık, Kilis, Turkey
| | - Sevgi Ates
- Faculty of Sciences and Letters, Department of Chemistry, University of Cukurova, Adana, Turkey
| | - Birgul Yazici
- Faculty of Sciences and Letters, Department of Chemistry, University of Cukurova, Adana, Turkey
| | - S. Seyhan Tukel
- Faculty of Sciences and Letters, Department of Chemistry, University of Cukurova, Adana, Turkey
| |
Collapse
|
14
|
Ravindran R, Hassan SS, Williams GA, Jaiswal AK. A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering (Basel) 2018; 5:E93. [PMID: 30373279 PMCID: PMC6316327 DOI: 10.3390/bioengineering5040093] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 01/21/2023] Open
Abstract
Agro-industrial waste is highly nutritious in nature and facilitates microbial growth. Most agricultural wastes are lignocellulosic in nature; a large fraction of it is composed of carbohydrates. Agricultural residues can thus be used for the production of various value-added products, such as industrially important enzymes. Agro-industrial wastes, such as sugar cane bagasse, corn cob and rice bran, have been widely investigated via different fermentation strategies for the production of enzymes. Solid-state fermentation holds much potential compared with submerged fermentation methods for the utilization of agro-based wastes for enzyme production. This is because the physical⁻chemical nature of many lignocellulosic substrates naturally lends itself to solid phase culture, and thereby represents a means to reap the acknowledged potential of this fermentation method. Recent studies have shown that pretreatment technologies can greatly enhance enzyme yields by several fold. This article gives an overview of how agricultural waste can be productively harnessed as a raw material for fermentation. Furthermore, a detailed analysis of studies conducted in the production of different commercially important enzymes using lignocellulosic food waste has been provided.
Collapse
Affiliation(s)
- Rajeev Ravindran
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, D01 HV58 Dublin, Ireland.
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, D08 NF82 Dublin, Ireland.
| | - Shady S Hassan
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, D01 HV58 Dublin, Ireland.
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, D08 NF82 Dublin, Ireland.
| | - Gwilym A Williams
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, D08 NF82 Dublin, Ireland.
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, D01 HV58 Dublin, Ireland.
| |
Collapse
|
15
|
Su CH, Nguyen HC, Nguyen ML, Tran PT, Wang FM, Guan YL. Liquid lipase-catalyzed hydrolysis of gac oil for fatty acid production: Optimization using response surface methodology. Biotechnol Prog 2018; 34:1129-1136. [PMID: 30281955 DOI: 10.1002/btpr.2714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/19/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023]
Abstract
Fatty acids are valuable products because they have wide industrial applications in the manufacture of detergents, cosmetics, food, and various biomedical applications. In enzyme-catalyzed hydrolysis, the use of immobilized lipase results in high production cost. To address this problem, Eversa Transform lipase, a new and low-cost liquid lipase formulation, was used for the first time in oil hydrolysis with gac oil as a triglyceride source in this study. Response surface methodology was employed to optimize the reaction conditions and establish a reliable mathematical model for predicting hydrolysis yield. A maximal yield of 94.16% was obtained at a water-to-oil molar ratio of 12.79:1, reaction temperature of 38.9 °C, enzyme loading of 13.88%, and reaction time of 8.41 h. Under this optimal reaction condition, Eversa Transform lipase could be reused for up to eight cycles without significant loss in enzyme activity. This study indicates that the use of liquid Eversa Transform lipase in enzyme-catalyzed oil hydrolysis could be a promising and cheap method of fatty acid production. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018.
Collapse
Affiliation(s)
- Chia-Hung Su
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hoang Chinh Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - My Linh Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phung Thanh Tran
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Fu-Ming Wang
- Graduate Inst. of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Lin Guan
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
16
|
A novel approach for bioconjugation of Rhizomucor miehei lipase (RML) onto amine-functionalized supports; Application for enantioselective resolution of rac-ibuprofen. Int J Biol Macromol 2018; 117:523-531. [DOI: 10.1016/j.ijbiomac.2018.05.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
|
17
|
Covalent Immobilization of Protein A on Chitosan and Aldehyde Double-Branched Chitosan as Biocompatible Carriers for Immunoglobulin G (Igg) Purification. J Chromatogr Sci 2018; 56:933-940. [DOI: 10.1093/chromsci/bmy070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 06/16/2018] [Indexed: 11/14/2022]
|
18
|
Abdul Manan FM, Attan N, Widodo N, Aboul-Enein HY, Wahab RA. Rhizomucor miehei lipase immobilized on reinforced chitosan–chitin nanowhiskers support for synthesis of eugenyl benzoate. Prep Biochem Biotechnol 2018; 48:92-102. [DOI: 10.1080/10826068.2017.1405021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatin Myra Abdul Manan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nursyafreena Attan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nashi Widodo
- Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
| |
Collapse
|
19
|
Yi S, Dai F, Zhao C, Si Y. A reverse micelle strategy for fabricating magnetic lipase-immobilized nanoparticles with robust enzymatic activity. Sci Rep 2017; 7:9806. [PMID: 28852219 PMCID: PMC5575323 DOI: 10.1038/s41598-017-10453-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/08/2017] [Indexed: 01/06/2023] Open
Abstract
Enzyme-immobilized nanoparticles that are both catalysis effective and recyclable would have wide applications ranging from bioengineering and food industry to environmental fields; however, creating such materials has proven extremely challenging. Herein, we present a scalable methodology to create Candida rugosa lipase-immobilized magnetic nanoparticles (L-MNPs) by the combination of nonionic reverse micelle method and Fe3O4 nanoparticles. Our approach causes the naturally abundant and sustainable Candida rugose lipase to ordered-assemble into nanoparticles with high catalytic activity and durability. The resultant L-MNPs exhibit the integrated properties of high porosity, large surface area, fractal dimension, robust enzymatic activity, good durability, and high magnetic saturation (59 emu g-1), which can effectively catalyze pentyl valerate esterification and be easily separated by an external magnet in 60 second. The fabrication of such fascinating L-MNPs may provide new insights for developing functional enzyme-immobilized materials towards various applications.
Collapse
Affiliation(s)
- Shixiong Yi
- State Key Laboratory of Silkworm Genome Biology & College of Biotechnology, Southwest University, Chongqing, 400715, P. R. China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology & College of Biotechnology, Southwest University, Chongqing, 400715, P. R. China
| | - Cunyi Zhao
- Fiber and Polymer Science, University of California, Davis, CA, 95616, USA
| | - Yang Si
- Fiber and Polymer Science, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
20
|
Heparin depolymerization by immobilized heparinase: A review. Int J Biol Macromol 2017; 99:721-730. [DOI: 10.1016/j.ijbiomac.2017.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/19/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022]
|
21
|
Gholamzadeh P, Mohammadi Ziarani G, Badiei A. Immobilization of lipases onto the SBA-15 mesoporous silica. BIOCATAL BIOTRANSFOR 2017; 35:131-150. [DOI: 10.1080/10242422.2017.1308495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/29/2016] [Accepted: 11/28/2016] [Indexed: 01/23/2023]
Affiliation(s)
| | | | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Qafari SM, Ahmadian G, Mohammadi M. One-step purification and oriented attachment of protein A on silica and graphene oxide nanoparticles using sortase-mediated immobilization. RSC Adv 2017. [DOI: 10.1039/c7ra12128h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One-step purification and oriented immobilization of protein A on functionalized carriers.
Collapse
Affiliation(s)
- Seyed Mehdi Qafari
- Systems Biotechnology Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Gholamreza Ahmadian
- Systems Biotechnology Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Mehdi Mohammadi
- Bioprocess Engineering Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| |
Collapse
|
23
|
Immobilization of Candida Antarctica lipase B on epoxy modified silica by sol-gel process. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Improved Performance of Lipase Immobilized on Tannic Acid-Templated Mesoporous Silica Nanoparticles. Appl Biochem Biotechnol 2016; 179:1155-69. [DOI: 10.1007/s12010-016-2056-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
|
25
|
Mohammadi M, Gandomkar S, Habibi Z, Yousefi M. One pot three-component reaction for covalent immobilization of enzymes: application of immobilized lipases for kinetic resolution of rac-ibuprofen. RSC Adv 2016. [DOI: 10.1039/c6ra11284f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A one pot three-component reaction was used for the covalent immobilization of CALB and RML on epoxy-functionalized supports.
Collapse
Affiliation(s)
- Mehdi Mohammadi
- Bioprocess Engineering Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Somayyeh Gandomkar
- Department of Pure Chemistry
- Faculty of Chemistry
- Shahid Beheshti University
- Tehran
- Iran
| | - Zohreh Habibi
- Department of Pure Chemistry
- Faculty of Chemistry
- Shahid Beheshti University
- Tehran
- Iran
| | - Maryam Yousefi
- Nanobiotechnology Research Center
- Avicenna Research Institute
- ACECR
- Tehran
- Iran
| |
Collapse
|
26
|
Cipolatti EP, Valério A, Henriques RO, Moritz DE, Ninow JL, Freire DMG, Manoel EA, Fernandez-Lafuente R, de Oliveira D. Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Adv 2016. [DOI: 10.1039/c6ra22047a] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advantages, drawbacks and trends in nanomaterials for enzyme immobilization.
Collapse
Affiliation(s)
- Eliane P. Cipolatti
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
- Biochemistry Department
| | - Alexsandra Valério
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Rosana O. Henriques
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Denise E. Moritz
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Jorge L. Ninow
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Denise M. G. Freire
- Biochemistry Department
- Chemistry Institute
- Federal University of Rio de Janeiro
- 21949-909 Rio de Janeiro
- Brazil
| | - Evelin A. Manoel
- Biochemistry Department
- Chemistry Institute
- Federal University of Rio de Janeiro
- 21949-909 Rio de Janeiro
- Brazil
| | | | - Débora de Oliveira
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| |
Collapse
|
27
|
Mohammadi M, Ashjari M, Garmroodi M, Yousefi M, Karkhane AA. The use of isocyanide-based multicomponent reaction for covalent immobilization of Rhizomucor miehei lipase on multiwall carbon nanotubes and graphene nanosheets. RSC Adv 2016. [DOI: 10.1039/c6ra14142k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One-pot immobilization of RML on carbon-based nanomaterials was performed by using the Ugi four component reaction under extremely mild conditions.
Collapse
Affiliation(s)
- Mehdi Mohammadi
- Bioprocess Engineering Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Maryam Ashjari
- Bioprocess Engineering Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | | | - Maryam Yousefi
- Nanobiotechnology Research Center
- Avicenna Research Institute
- ACECR
- Tehran
- Iran
| | - Ali Asghar Karkhane
- Systems Biotechnology Department
- Institute of Industrial and Environmental Biotechnology
- National Institute for Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| |
Collapse
|
28
|
Ashjari M, Mohammadi M, Badri R. Selective concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil with immobilized/stabilized preparations of Rhizopus oryzae lipase. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Enantioselective resolution of racemic ibuprofen esters using different lipases immobilized on epoxy-functionalized silica. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Babaki M, Yousefi M, Habibi Z, Brask J, Mohammadi M. Preparation of highly reusable biocatalysts by immobilization of lipases on epoxy-functionalized silica for production of biodiesel from canola oil. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.04.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Ashjari M, Mohammadi M, Badri R. Chemical amination of Rhizopus oryzae lipase for multipoint covalent immobilization on epoxy-functionalized supports: Modulation of stability and selectivity. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Mohammadi M, Ashjari M, Dezvarei S, Yousefi M, Babaki M, Mohammadi J. Rapid and high-density covalent immobilization of Rhizomucor miehei lipase using a multi component reaction: application in biodiesel production. RSC Adv 2015. [DOI: 10.1039/c5ra03299g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rapid and high capacity immobilization of Rhizomucor miehei lipase on aldehyde-functionalized supports was performed under mild condition via a multi component reaction. The mechanism of immobilization reaction was determined as the Ugi reaction.
Collapse
Affiliation(s)
- Mehdi Mohammadi
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Maryam Ashjari
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
- Department of Chemistry
- College of Science
| | - Shaghayegh Dezvarei
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
- Department of Chemistry
- Faculty of Science
| | - Maryam Yousefi
- Nanobiotechnology Research Center
- Avicenna Research Institute
- ACECR
- Tehran
- Iran
| | - Mohadese Babaki
- Department of Chemistry
- Faculty of Science
- Shahid Beheshti University
- G.C
- Tehran
| | - Javad Mohammadi
- Department of Environmental Health Engineering
- Zanjan University of Medical Sciences
- Zanjan
- Iran
| |
Collapse
|