1
|
Zhao N, Liu Z, Chen X, Yu T, Yan F. Microbial biofilms: a comprehensive review of their properties, beneficial roles and applications. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39579053 DOI: 10.1080/10408398.2024.2432474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Biofilms are microbial communities nested in self-secreted extracellular polymeric substances that can provide microorganisms with strong tolerance and a favorable living environment. Deepening the understanding and research on positive effects of microbial biofilms is consequently necessary, since most researches focuses on how to control biofilms formation to reduce food safety issues. This paper highlights beneficial roles of biofilms including the formation mechanism, influencing factors, health benefits, strategies to improve its film-forming efficiency, as well as applications especially in fields of food industry, agriculture and husbandry, and environmental management. Beneficial biofilms can be affected by multiple factors such as strain characteristics, media composition, signal molecules, and carrier materials. The biofilm barrier composed of beneficial bacteria provides a more favorable microecological environment, keeping bacteria survival longer, and its derived metabolites are better conducive to health. However, in the practical application of biofilms, there are still significant challenges, especially in terms of film-forming efficiency, stability, and safety assessment. Continuous research is needed to discover innovative methods of utilizing biofilms for sustainable food development in the future, in order to fully unleash its potential and promote its application in the food industry.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongyang Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xinyi Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Jenjitwanich A, Marx H, Sauer M. Characterization of the metabolism of the yeast Yarrowia lipolytica growing as a biofilm. FEMS MICROBES 2024; 5:xtae026. [PMID: 39529679 PMCID: PMC11552517 DOI: 10.1093/femsmc/xtae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
Yarrowia lipolytica is a well-characterized yeast with remarkable metabolic adaptability. It is capable of producing various products from different carbon sources and easily switching between planktonic and biofilm states. A biofilm represents a natural means of cell immobilization that could support continuous cultivation and production processes, such as perfusion cultivation. However, the metabolic activities of Y. lipolytica in biofilms have not yet been studied in detail. Therefore, this study aimed to compare the metabolic activities of Y. lipolytica in biofilm and planktonic states. Conventionally, a stirred tank bioreactor was used to cultivate Y. lipolytica in a planktonic state. On the other hand, a trickle bed bioreactor system was used for biofilm cultivation. The low pH at 3 was maintained to favor polyol production. The accumulation of citric acid was observed over time only in the biofilm state, which significantly differed from the planktonic state. Although the biofilm cultivation process has lower productivity, it has been observed that the production rate remains constant and the total product yield is comparable to the planktonic state when supplied with 42% oxygen-enriched air. This finding indicates that the biofilm state has the potential for continuous bioprocessing applications and is possibly a feasible option.
Collapse
Affiliation(s)
- Akarawit Jenjitwanich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Hans Marx
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- Research Area: Biochemical Engineering, Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Michael Sauer
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- OMV AG, Trabrennstraße 6–8, 1020 Vienna, Austria
| |
Collapse
|
3
|
Singh S, Deepa N, Rastogi D, Chaturvedi S, Syed N, Singh A, Nannaware AD, Rout PK. Biotransformation of ricinoleic acid to γ-decalactone using novel yeast strains and process optimization by applying Taguchi model. J Biotechnol 2023; 377:34-42. [PMID: 37848135 DOI: 10.1016/j.jbiotec.2023.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Flavour molecules are generated now-a-days through microbial fermentation on a commercial scale. γ-Decalactone (GDL) is an important molecule due to its long-lasting flavouring impact as buttery, coconut and peach-type. In the current study, 33 microorganisms were isolated from different fruit sources, and their screening for target GDL production was performed. Using DNA sequencing, two potential strains yielding good amounts of GDL were identified from pineapple and strawberry fruits. The identified strains were Metschnikowia vanudenii (OP954735) and Candida parapsilosis (OP954733), and further optimized by Taguchi method. The effectiveness of lactone production is influenced by the rate of microbial growth under various operating conditions. The factors such as substrate concentration, pH, temperature, cell density and rotation (rpm) with 3 levels were applied for the GDL production using M. vanudenii (OP954735) and C. parapsilosis (OP954733) strains. The results revealed that the highest molar conversion of GDL was 24.69% (115.7 mg/g quantitative yield) and 52.69% (272.0 mg/g quantitative yield) at the optimal conditions using SB-62 and PA-19 strains, respectively. The two novel strains are reported for the first time for production of γ-decalactone and overall, this study opens up the possibility of using Taguchi design for large scale up process development for producing food flavours utilising environmentally friendly natural strains.
Collapse
Affiliation(s)
- Suman Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Nikky Deepa
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Dheerendra Rastogi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Shivani Chaturvedi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Naziya Syed
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Jawaharlal Nehru University, New Delhi, 110067, India
| | - Akanksha Singh
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashween Deepak Nannaware
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prasant Kumar Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Yu Y, Zhou Y, Wang K, Sun T, Lin L, Ledesma-Amaro R, Ji XJ. Metabolic and Process Engineering for Producing the Peach-Like Aroma Compound γ-Decalactone in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:110-120. [PMID: 36579964 DOI: 10.1021/acs.jafc.2c07356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to its strong and unique peach-like aroma, γ-decalactone is widely used in dairy products and other foods or beverages. The oleaginous yeast Yarrowia lipolytica, which is generally regarded as safe, has shown great potential in the production of this flavor compound. Recently, the development of metabolic and process engineering has enabled the application of Y. lipolytica for the production of γ-decalactone. This Review summarizes the relevant biosynthesis and degradation pathways of Y. lipolytica, after which the related metabolic engineering strategies to increase the accumulation of γ-decalactone are summarized. In addition, the factors affecting γ-decalactone accumulation in Y. lipolytica are introduced, and corresponding process optimization strategies are discussed. Finally, the current research needs are analyzed to search for remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Yizi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yufan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
5
|
Use of Pressurized and Airlift Bioreactors for Citric Acid Production by Yarrowia lipolytica from Crude Glycerol. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Citric acid production is generally carried out in an aqueous medium in stirred tank reactors (STR), where the solubility of oxygen is low and the oxygen demand of microbial cultures is high. Thus, for this bioprocess, providing adequate oxygen mass transfer rate (OTR) from the gas phase into the aqueous culture medium is the main challenge of bioreactor selection and operation. In this study, citric acid production by Yarrowia lipolytica W29 from crude glycerol, in batch cultures, was performed in two non-conventional bioreactors normally associated with high mass transfer efficiency: a pressurized STR and an airlift bioreactor. Increased OTR was obtained by raising the total air pressure in the pressurized STR and by increasing the aeration rate in the airlift bioreactor. An improvement of 40% in maximum citric acid titer was obtained by raising the air pressure from 1 bar to 2 bar, whereas, in the airlift bioreactor, a 30% improvement was attained by increasing the aeration rate from 1 vvm to 1.5 vvm. Both bioreactor types can be successfully applied for the citric acid production process using alternative ways of improving OTR than increasing mechanical stirring power input, thus leading to important operating saving costs.
Collapse
|
6
|
AL Mualad WNA, Bouchedja DN, Selmania A, Maadadi R, Ikhlef A, Kabouche Z, Elmechta L, Boudjellal A. Yeast Yarrowia lipolytica as a biofactory for the production of lactone-type aroma gamma-decalactone using castor oil as substrate. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02435-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Syed N, Singh S, Chaturvedi S, Nannaware AD, Khare SK, Rout PK. Production of lactones for flavoring and pharmacological purposes from unsaturated lipids: an industrial perspective. Crit Rev Food Sci Nutr 2022; 63:10047-10078. [PMID: 35531939 DOI: 10.1080/10408398.2022.2068124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The enantiomeric pure and natural (+)-Lactones (C ≤ 14) with aromas obtained from fruits and milk are considered flavoring compounds. The flavoring value is related to the lactones' ring size and chain length, which blend in varying concentrations to produce different stone-fruit flavors. The nature-identical and enantiomeric pure (+)-lactones are only produced through whole-cell biotransformation of yeast. The industrially important γ-decalactone and δ-decalactone are produced by a four-step aerobic-oxidation of ricinoleic acid (RA) following the lactonization mechanism. Recently, metabolic engineering strategies have opened up new possibilities for increasing productivity. Another strategy for increasing yield is to immobilize the RA and remove lactones from the broth regularly. Besides flavor impact, γ-, δ-, ε-, ω-lactones of the carbon chain (C8-C12), the macro-lactones and their derivatives are vital in pharmaceuticals and healthcare. These analogues are isolated from natural sources or commercially produced via biotransformation and chemical synthesis processes for medicinal use or as active pharmaceutical ingredients. The various approaches to biotransformation have been discussed in this review to generate more prospects from a commercial point of view. Finally, this work will be regarded as a magical brick capable of containing both traditional and genetic engineering technology while contributing to a wide range of commercial applications.
Collapse
Affiliation(s)
- Naziya Syed
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Suman Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Shivani Chaturvedi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Ashween Deepak Nannaware
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, Uttar Pradesh, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Prasant Kumar Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, Uttar Pradesh, India
| |
Collapse
|
8
|
Process optimization for production and purification of γ-decalactone from ricinoleic acid using Yarrowia lipolytica NCIM 3590. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Liu X, Yu X, Zhang T, Wang Z, Xu J, Xia J, He A, Yan Y, Xu J. Novel two-stage solid-state fermentation for erythritol production on okara-buckwheat husk medium. BIORESOURCE TECHNOLOGY 2018; 266:439-446. [PMID: 30005411 DOI: 10.1016/j.biortech.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
An economical model of two-stage solid state fermentation (SSF) (prefermentation stage with Mucor flavus and in situ erythritol fermentation stage with Yarrowia lipolytica) for enhancing erythritol production was investigated. Buckwheat husk (BH) was utilized as inert support for the first time and okara as the substrate. Morphological properties suggested yeast cells were exposed in adequate oxygen leading to high erythritol yield, and enzyme activities analysis indicated M. flavus and Y. lipolytica grew and cooperated well during the two ferment stages. Maximum erythritol production (143.3 mg/gds) was obtained from okara-BH mixture (5:2, w/w) supplemented with 0.01 g/gds NaCl, with an initial moisture content of 60% and pH of 4.0 for 192 h, while undesired mannitol and citric acid were suppressed. Compared with submerged fermentation, two-stage SSF was short period, energy conserving and operable for erythritol production from insoluble wastes, and this is the first report on erythritol production via SSF.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Jiangsu Province, China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tong Zhang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Zhipeng Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China.
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Yubo Yan
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jiming Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| |
Collapse
|
10
|
Generation of Flavors and Fragrances Through Biotransformation and De Novo Synthesis. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2180-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Aroma compounds production by solid state fermentation, importance of in situ gas-phase recovery systems. Appl Microbiol Biotechnol 2018; 102:7239-7255. [PMID: 29938320 DOI: 10.1007/s00253-018-9157-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022]
Abstract
Flavour and fragrance compounds are extremely important for food, feed, cosmetic and pharmaceutical industries. In the last decades, due to the consumer's increased trend towards natural products, a great interest in natural aroma compounds has arisen to the detriment of chemically synthesised ones. Recently, solid state fermentation (SSF) has been applied in the production of many metabolites. Aroma compounds can be produced by SSF with a higher yield compared to submerged fermentation (SmF). In SSF processes, aroma compounds can be produced in the solid matrix or in the headspace, but they can be lost or stripped when aeration is required. This review focuses on the production of aroma compounds by SSF processes with a special highlight on in situ systems to recover the volatiles released in the gaseous phase and stripped due to aeration. Following a brief presentation of specificities of SSF processes concerning the choice of microorganisms and the solid matrix used for the production of aroma compounds, bioreactor aspects, factors affecting production of aroma compounds and in situ gas phase aroma recovery systems in aerated SSF bioreactors are discussed.
Collapse
|
12
|
Yarrowia lipolytica morphological mutant enables lasting in situ immobilization in bioreactor. Appl Microbiol Biotechnol 2018; 102:5473-5482. [DOI: 10.1007/s00253-018-9006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/29/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
|
13
|
WITHDRAWN: Dataset on solid state fermentation for the production of lactones by Yarrowia lipolytica. Data Brief 2018. [DOI: 10.1016/j.dib.2018.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Try S, De-Coninck J, Voilley A, Chunhieng T, Waché Y. Solid state fermentation for the production of γ-decalactones by Yarrowia lipolytica. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Braga A, Belo I. Biotechnological production of γ-decalactone, a peach like aroma, by Yarrowia lipolytica. World J Microbiol Biotechnol 2016; 32:169. [PMID: 27565779 DOI: 10.1007/s11274-016-2116-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
The request for new flavourings increases every year. Consumer perception that everything natural is better is causing an increase demand for natural aroma additives. Biotechnology has become a way to get natural products. γ-Decalactone is a peach-like aroma widely used in dairy products, beverages and others food industries. In more recent years, more and more studies and industrial processes were endorsed to cost-effect this compound production. One of the best-known methods to produce γ-decalactone is from ricinoleic acid catalyzed by Yarrowia lipolytica, a generally regarded as safe status yeast. As yet, several factors affecting γ-decalactone production remain to be fully understood and optimized. In this review, we focus on the aromatic compound γ-decalactone and its production by Y. lipolytica. The metabolic pathway of lactone production and degradation are addressed. Critical analysis of novel strategies of bioprocess engineering, metabolic and genetic engineering and other strategies for the enhancement of the aroma productivity are presented.
Collapse
Affiliation(s)
- A Braga
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - I Belo
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
16
|
Braga A, Mesquita D, Amaral A, Ferreira E, Belo I. Aroma production by Yarrowia lipolytica in airlift and stirred tank bioreactors: Differences in yeast metabolism and morphology. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|