1
|
Huang C, Song X, Li J, Cui Q, Gu P, Feng Y. Optimization of Squalene Production by Pseudozyma sp. P4-22. Molecules 2025; 30:1646. [PMID: 40286257 PMCID: PMC11990619 DOI: 10.3390/molecules30071646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Squalene is an important bioactive substance widely used in the food, pharmaceutical, and cosmetic industries. Microbial production of squalene has gained prominence in recent years due to its sustainability, safety, and environmental friendliness. In this study, a mutant strain, Pseudozyma sp. P4-22, with enhanced squalene-producing ability, was obtained through atmospheric and room temperature plasma mutagenesis of the previously screened squalene-producing yeast Pseudozyma sp. SD301. The P4-22 strain demonstrated the ability to produce squalene using various carbon and nitrogen sources. We optimized the culture conditions by employing cost-effective corn steep liquor as the nitrogen source, and the optimal pH and sea salt concentration of the medium were determined to be 5.5 and 5 g/L, respectively. Under optimal cultivation conditions, the biomass and squalene production reached 64.42 g/L and 2.06 g/L, respectively, in a 5 L fed-batch fermentation. This study highlights the potential of Pseudozyma sp. P4-22 as a promising strain for commercial-scale production of squalene.
Collapse
Affiliation(s)
- Chen Huang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
| | - Jingyi Li
- Haide College, Ocean University of China, Qingdao 266101, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Milessi TS, Sandri JP, Arruda PV, Esteves TD, Pinheiro LP, Kumar V, Chandel AK. Role of non-genetically modified or native pentose fermenting microorganisms in establishing viable lignocellulosic biorefineries in the Brazilian context. Crit Rev Biotechnol 2025:1-19. [PMID: 39978937 DOI: 10.1080/07388551.2025.2452628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 02/22/2025]
Abstract
Brazil can play a pivotal role in the development of a circular bioeconomy as the country ranks among the top five major agricultural countries in the world producing a foreseeable lignocellulosic biomass from crops, such as sugarcane, soybean, corn, rice, coffee, and eucalyptus. Considering that pentose sugars (C5 sugars) represent 20%-35% of the amount of lignocellulosic biomass components, these sugars have a great potential in the development of carbon neutral economy. From the biomass conversion economic point of view, the conversion of hemicellulose into renewable products with a satisfactory yield is the most needed. However, the biochemical conversion of pentose sugars is challenging due to the scarcity of native pentose sugars fermenting microorganisms. While recent advances in metabolic engineering have been effective in developing a strong molecular chassis for efficient pentose sugars conversion, the yields, productivities, and stability of the genetically modified organisms (GMOs) are major limiting factors for industrial-scale applications. Native lignocellulosic sugars fermenting microorganisms are competent, robust, and inhibitor-tolerant but their lower productivities continue to be a big concern. This article explains the inherent characteristics of native pentose fermenting microorganisms in establishing viable lignocellulosic biorefineries in the Brazilian context, with a special focus on their isolation from Brazilian biodiversity, along with the evaluation of nongenetic engineering techniques to improve strains for biorefinery application.
Collapse
Affiliation(s)
- Thais S Milessi
- Department of Chemical Engineering, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Graduate Program in Energy Engineering, Institute of Natural Resources (IRN), Federal University of Itajubá, Minas Gerais, Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Juliana P Sandri
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Priscila V Arruda
- Department of Bioprocess Engineering and Biotechnology - COEBB/TD, Federal University of Technology of Paraná, Toledo, Paraná, Brazil
| | - Tayrone D Esteves
- Department of Biotechnology, School of Engineering of Lorena, University of São Paulo (USP), Estrada Municipal do Campinho, Lorena, São Paulo, Brazil
| | - Luisa P Pinheiro
- Graduate Program in Energy Engineering, Institute of Natural Resources (IRN), Federal University of Itajubá, Minas Gerais, Brazil
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Anuj K Chandel
- Department of Biotechnology, School of Engineering of Lorena, University of São Paulo (USP), Estrada Municipal do Campinho, Lorena, São Paulo, Brazil
| |
Collapse
|
3
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
4
|
Valkenburg AD, Ncube MZ, Teke GM, van Rensburg E, Pott RWM. A review on the upstream production and downstream purification of mannosylerythritol lipids. Biotechnol Bioeng 2024; 121:853-876. [PMID: 38108218 DOI: 10.1002/bit.28625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Biosurfactants are natural compounds with remarkable surface-active properties that may offer an eco-friendly alternative to conventional surfactants. Among them, mannosylerythritol lipids (MELs) stand out as an intriguing example of a glycolipid biosurfactant. MELs have been used in a variety of sectors for various applications, and are currently commercially produced. Industrially, they are used in the pharmaceutical, cosmetic, food, and agricultural industries, based on their ability to reduce surface tension and enhance emulsification. However, despite their utility, their production is comparatively limited industrially. From a bioprocessing standpoint, two areas of interest to improve the production process are upstream production and downstream (separation and purification) product recovery. The former has seen a significant amount of research, with researchers investigating several production factors: the microbial species or strain employed, the producing media composition, and the production strategy implemented. Improvement and optimization of these are key to scale-up the production of MELs. On the other hand, the latter has seen comparatively limited work presented in the literature. For the most part traditional separation techniques have been employed. This systematic review presents the production and purification methodologies used by researchers by comprehensively analyzing the current state-of-the-art with regards the production, separation, and purification of MELs. By doing so, the review presents different possible approaches, and highlights some potential areas for future work by identifying opportunities for the commercialization of MELs.
Collapse
Affiliation(s)
- André D Valkenburg
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Mellisa Z Ncube
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - George M Teke
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Eugéne van Rensburg
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Robert W M Pott
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
5
|
Faria NT, Nascimento MF, Ferreira FA, Esteves T, Santos MV, Ferreira FC. Substrates of Opposite Polarities and Downstream Processing for Efficient Production of the Biosurfactant Mannosylerythritol Lipids from Moesziomyces spp. Appl Biochem Biotechnol 2023; 195:6132-6149. [PMID: 36811772 PMCID: PMC10511570 DOI: 10.1007/s12010-023-04317-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/24/2023]
Abstract
Biosurfactants can replace fossil-driven surfactants with positive environmental impacts, owing to their low eco-toxicity and high biodegradability. However, their large-scale production and application are restricted by high production costs. Such costs can be reduced using renewable raw materials and facilitated downstream processing. Here, a novel strategy for mannosylerythritol lipid (MEL) production explores the combination of hydrophilic and hydrophobic carbon sources sideways with a novel downstream processing strategy, based on nanofiltration technology. Co-substrate MEL production by Moesziomyces antarcticus was threefold higher than using D-glucose with low levels of residual lipids. The use of waste frying oil instead of soybean oil (SBO) in co-substrate strategy resulted in similar MEL production. Moesziomyces antarcticus cultivations, using 3.9 M of total carbon in substrates, yields 7.3, 18.1, and 20.1 g/L of MEL, and 2.1, 10.0, and 5.1 g/L of residual lipids, for D-glucose, SBO, and a combination of D-Glucose and SBO, respectively. Such approach makes it possible to reduce the amount of oil used, offset by the equivalent molar increase in D-glucose, improving sustainability and decreasing residual unconsumed oil substrates, facilitating downstream processing. Moesziomyces spp. also produces lipases that broken down the oil and, thus, residual unconsumed oils are in the form of free fatty-acids or monoacylglycerol, which are smaller molecules than MEL. Therefore, nanofiltration of ethyl acetate extracts from co-substrate-based culture broths allows to improve MEL purity (ratio of MEL per total MEL and residual lipids) from 66 to 93% using 3-diavolumes.
Collapse
Affiliation(s)
- Nuno Torres Faria
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Miguel Figueiredo Nascimento
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Flávio Alves Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Teresa Esteves
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Marisa Viegas Santos
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| |
Collapse
|
6
|
Adiandri RS, Purwadi R, Hoerudin H, Setiadi T. Evaluation of Biosurfactant Production by Bacillus Species Using Glucose and Xylose as Carbon Sources. Curr Microbiol 2023; 80:250. [PMID: 37347358 DOI: 10.1007/s00284-023-03345-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023]
Abstract
Lignocellulosic material is one of the raw materials that can be used to reduce the cost of biosurfactant production because it is cheap, abundantly available, and contains cellulose and hemicellulose which can be hydrolyzed to glucose and xylose as carbon sources. This study aimed to evaluate biosurfactant production by Bacillus species using glucose and xylose as carbon sources, which are the most abundant sugar monomers from the hydrolysis of lignocellulosic materials. In this study, biosurfactants were produced by six bacterial isolates belonging to the Bacillus genus. The six bacterial isolates were identified molecularly through 16S rRNA sequencing. The results showed that the six bacterial isolates were identified as B. subtilis ITBCC46, B. subtilis ITBCC40, B. subtilis ITBCC31, B. siamensis ITBCC36, B. xiamenensis ITBCC43, and B. subtilis ITBCC30. All Bacillus species used in this study could be grown on glucose or xylose media. Biosurfactants produced by B. subtilis ITBCC46, B. subtilis ITBCC40, B. subtilis ITBCC31, and B. siamensis ITBCC36 could reduce surface tension below 40 mN/m (32.70 to 39.15 mN/m). All biosurfactants produced by these Bacillus species had more than 50% emulsification stability. These characteristics indicated that the biosurfactants had the desired quality.
Collapse
Affiliation(s)
- Resa Setia Adiandri
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, West Java, 40132, Indonesia
- Indonesian Center for Agricultural Postharvest Research and Development, Indonesian Agency for Agricultural Research and Development, Bogor, 16124, Indonesia
| | - Ronny Purwadi
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, West Java, 40132, Indonesia
- Food Engineering Department, Institut Teknologi Bandung, Jatinangor Campus, Sumedang, 45363, Indonesia
| | - Hoerudin Hoerudin
- Indonesian Center for Agricultural Postharvest Research and Development, Indonesian Agency for Agricultural Research and Development, Bogor, 16124, Indonesia
| | - Tjandra Setiadi
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, West Java, 40132, Indonesia.
| |
Collapse
|
7
|
Mierke F, Brink DP, Norbeck J, Siewers V, Andlid T. Functional genome annotation and transcriptome analysis of Pseudozyma hubeiensis BOT-O, an oleaginous yeast that utilizes glucose and xylose at equal rates. Fungal Genet Biol 2023; 166:103783. [PMID: 36870442 DOI: 10.1016/j.fgb.2023.103783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Pseudozyma hubeiensis is a basidiomycete yeast that has the highly desirable traits for lignocellulose valorisation of being equally efficient at utilization of glucose and xylose, and capable of their co-utilization. The species has previously mainly been studied for its capacity to produce secreted biosurfactants in the form of mannosylerythritol lipids, but it is also an oleaginous species capable of accumulating high levels of triacylglycerol storage lipids during nutrient starvation. In this study, we aimed to further characterize the oleaginous nature of P. hubeiensis by evaluating metabolism and gene expression responses during storage lipid formation conditions with glucose or xylose as a carbon source. The genome of the recently isolated P. hubeiensis BOT-O strain was sequenced using MinION long-read sequencing and resulted in the most contiguous P. hubeiensis assembly to date with 18.95 Mb in 31 contigs. Using transcriptome data as experimental support, we generated the first mRNA-supported P. hubeiensis genome annotation and identified 6540 genes. 80% of the predicted genes were assigned functional annotations based on protein homology to other yeasts. Based on the annotation, key metabolic pathways in BOT-O were reconstructed, including pathways for storage lipids, mannosylerythritol lipids and xylose assimilation. BOT-O was confirmed to consume glucose and xylose at equal rates, but during mixed glucose-xylose cultivation glucose was found to be taken up faster. Differential expression analysis revealed that only a total of 122 genes were significantly differentially expressed at a cut-off of |log2 fold change| ≥ 2 when comparing cultivation on xylose with glucose, during exponential growth and during nitrogen-starvation. Of these 122 genes, a core-set of 24 genes was identified that were differentially expressed at all time points. Nitrogen-starvation resulted in a larger transcriptional effect, with a total of 1179 genes with significant expression changes at the designated fold change cut-off compared with exponential growth on either glucose or xylose.
Collapse
Affiliation(s)
- Friederike Mierke
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden; Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Daniel P Brink
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Joakim Norbeck
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| | - Thomas Andlid
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
8
|
Enhanced fermentation of biosurfactant mannosylerythritol lipids on the pilot scale under efficient foam control with addition of soybean oil. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Nascimento MF, Coelho T, Reis A, Gouveia L, Faria NT, Ferreira FC. Production of Mannosylerythritol Lipids Using Oils from Oleaginous Microalgae: Two Sequential Microorganism Culture Approach. Microorganisms 2022; 10:2390. [PMID: 36557643 PMCID: PMC9783733 DOI: 10.3390/microorganisms10122390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Mannosylerythritol lipids (MELs) are biosurfactants with excellent biochemical properties and a wide range of potential applications. However, most of the studies focusing on MELs high titre production have been relying in the use of vegetable oils with impact on the sustainability and process economy. Herein, we report for the first time MELs production using oils produced from microalgae. The bio-oil was extracted from Neochloris oleoabundans and evaluated for their use as sole carbon source or in a co-substrate strategy, using as an additional carbon source D-glucose, on Moesziomyces spp. cultures to support cell growth and induce the production of MELs. Both Moesziomyces antarcticus and M. aphidis were able to grow and produce MELs using algae-derived bio-oils as a carbon source. Using a medium containing as carbon sources 40 g/L of D-glucose and 20 g/L of bio-oils, Moesziomyces antarcticus and M. aphidis produced 12.47 ± 0.28 and 5.72 ± 2.32 g/L of MELs, respectively. Interestingly, there are no significant differences in productivity when using oils from microalgae or vegetable oils as carbon sources. The MELs productivities achieved were 1.78 ± 0.04 and 1.99 ± 0.12 g/L/h, respectively, for M. antarcticus fed with algae-derived or vegetable oils. These results open new perspectives for the production of MELs in systems combining different microorganisms.
Collapse
Affiliation(s)
- Miguel Figueiredo Nascimento
- Department of Bioengineering, IBB—Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Tiago Coelho
- Department of Bioengineering, IBB—Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Alberto Reis
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
| | - Luísa Gouveia
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
- GreenCoLab—Green Ocean Technologies and Products Collaborative Laboratory, CCMAR, Algarve University, 8005-139 Faro, Portugal
| | - Nuno Torres Faria
- Department of Bioengineering, IBB—Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering, IBB—Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
10
|
Salvador López JM, Vandeputte M, Van Bogaert INA. Oleaginous yeasts: Time to rethink the definition? Yeast 2022; 39:553-606. [PMID: 36366783 DOI: 10.1002/yea.3827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Oleaginous yeasts are typically defined as those able to accumulate more than 20% of their cell dry weight as lipids or triacylglycerides. Research on these yeasts has increased lately fuelled by an interest to use biotechnology to produce lipids and oleochemicals that can substitute those coming from fossil fuels or offer sustainable alternatives to traditional extractions (e.g., palm oil). Some oleaginous yeasts are attracting attention both in research and industry, with Yarrowia lipolytica one of the best-known and studied ones. Oleaginous yeasts can be found across several clades and different metabolic adaptations have been found, affecting not only fatty acid and neutral lipid synthesis, but also lipid particle stability and degradation. Recently, many novel oleaginous yeasts are being discovered, including oleaginous strains of the traditionally considered non-oleaginous Saccharomyces cerevisiae. In the face of this boom, a closer analysis of the definition of "oleaginous yeast" reveals that this term has instrumental value for biotechnology, while it does not give information about distinct types of yeasts. Having this perspective in mind, we propose to expand the term "oleaginous yeast" to those able to produce either intracellular or extracellular lipids, not limited to triacylglycerides, in at least one growth condition (including ex novo lipid synthesis). Finally, a critical look at Y. lipolytica as a model for oleaginous yeasts shows that the term "oleaginous" should be reserved only for strains and not species and that in the case of Y. lipolytica, it is necessary to distinguish clearly between the lipophilic and oleaginous phenotype.
Collapse
Affiliation(s)
- José Manuel Salvador López
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Meriam Vandeputte
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Inge N A Van Bogaert
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Nascimento MF, Barreiros R, Oliveira AC, Ferreira FC, Faria NT. Moesziomyces spp. cultivation using cheese whey: new yeast extract-free media, β-galactosidase biosynthesis and mannosylerythritol lipids production. BIOMASS CONVERSION AND BIOREFINERY 2022:1-14. [PMID: 35669232 PMCID: PMC9159787 DOI: 10.1007/s13399-022-02837-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 05/09/2023]
Abstract
Mannosylerythritol lipids (MELs) are biosurfactants with excellent biochemical properties and a wide range of potential applications. However, high production costs, low productivity and unsatisfactory scale-up production have hampered commercial adoption. Herein, we report for the first time the β-galactosidase production by Moesziomyces spp. from different sugars (D-galactose, D-glucose and D-lactose), with D-galactose being the best β-galactosidase inducer, with 11.2 and 63.1 IU/mgbiomass, for Moesziomyces aphidis 5535 T and Moesziomyces antarcticus 5048 T, respectively. The production of this enzyme allows to break down D-lactose and thus to produce MEL directly from D-lactose or cheese whey (a cheese industry by-product). Remarkably, when CW was used as sole media component (carbon and mineral source), in combination with waste frying oil, MEL productivities were very close (1.40 and 1.31 gMEL/L/day) to the ones obtained with optimized medium containing yeast extract (1.92 and 1.50 gMEL/gsusbtrate), both for M. antarcticus and M. aphidis. The low-cost, facile and efficient process which generates large amounts of MELs potentiates its industrialization. Supplementary Information The online version contains supplementary material available at 10.1007/s13399-022-02837-y.
Collapse
Affiliation(s)
- Miguel Figueiredo Nascimento
- Department of Bioengineering and IBB-Institute for Biotechnology and Bioengineering, Instituto Superior TécnicoUniversidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ricardo Barreiros
- Department of Bioengineering and IBB-Institute for Biotechnology and Bioengineering, Instituto Superior TécnicoUniversidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ana Cristina Oliveira
- Laboratório Nacional de Energia E Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and IBB-Institute for Biotechnology and Bioengineering, Instituto Superior TécnicoUniversidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Nuno Torres Faria
- Department of Bioengineering and IBB-Institute for Biotechnology and Bioengineering, Instituto Superior TécnicoUniversidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
12
|
Beck A, Vogt F, Hägele L, Rupp S, Zibek S. Optimization and Kinetic Modeling of a Fed-Batch Fermentation for Mannosylerythritol Lipids (MEL) Production With Moesziomyces aphidis. Front Bioeng Biotechnol 2022; 10:913362. [PMID: 35656195 PMCID: PMC9152284 DOI: 10.3389/fbioe.2022.913362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Mannosylerythritol lipids are glycolipid biosurfactants with many interesting properties. Despite the general interest in those molecules and the need for a robust process, studies on their production in bioreactors are still scarce. In the current study, the fermentative production of MEL in a bioreactor with Moesziomyces aphidis was performed using a defined mineral salt medium. Several kinetic process parameters like substrate consumption rates and product formation rates were evaluated and subsequently enhanced by increasing the biomass concentration through an exponential fed-batch strategy. The fed-batch approaches resulted in two to three fold increased dry biomass concentrations of 10.9–15.5 g/L at the end of the growth phase, compared with 4.2 g/L in the batch process. Consequently, MEL formation rates were increased from 0.1 g/Lh up to around 0.4 g/Lh during the MEL production phase. Thus, a maximum concentration of up to 50.5 g/L MEL was obtained when oil was added in excess, but high concentrations of residual fatty acids were also present in the broth. By adjusting the oil feeding to biomass-specific hydrolysis and MEL production rates, a slightly lower MEL concentration of 34.3 g/L was obtained after 170 h, but at the same time a very pure crude lipid extract with more than 90% MEL and a much lower concentration of remaining fatty acids. With rapeseed oil as substrate, the ideal oil-to-biomass ratio for full substrate conversion was found to be around 10 goil/gbiomass. In addition, off-gas analysis and pH trends could be used to assess biomass growth and MEL production. Finally, kinetic models were developed and compared to the experimental data, allowing for a detailed prediction of the process behavior in future experiments.
Collapse
Affiliation(s)
- Alexander Beck
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Franziska Vogt
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Lorena Hägele
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Steffen Rupp
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- *Correspondence: Susanne Zibek,
| |
Collapse
|
13
|
Solano-González S, Solano-Campos F. Production of mannosylerythritol lipids: biosynthesis, multi-omics approaches, and commercial exploitation. Mol Omics 2022; 18:699-715. [DOI: 10.1039/d2mo00150k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compilation of resources regarding MEL biosynthesis, key production parameters; available omics resources and current commercial applications, for smut fungi known to produce MELs.
Collapse
Affiliation(s)
- Stefany Solano-González
- Universidad Nacional, Escuela de Ciencias Biológicas, Laboratorio de Bioinformática Aplicada, Heredia, Costa Rica
| | - Frank Solano-Campos
- Universidad Nacional, Escuela de Ciencias Biológicas, Laboratorio de Biotecnología de Plantas, Heredia, Costa Rica
| |
Collapse
|
14
|
Fermentative Production of Mannosylerythritol Lipids using Sweetwater as Waste Substrate by Pseudozyma antarctica (MTCC 2706). TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2020-2272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mannosylerythritol lipids are glycolipid biosurfactants with promising industrial applications. However, their commercial production is hindered due to its high production cost. The current study investigates the use of sweetwater, a by-product of the fat-splitting industry in combination with soybean oil for the production of mannosylerythritol lipids using Pseudozyma antarctica (MTCC 2706). The optimum sweetwater and soybean oil concentration of 22% and 7% (w/v) yielded 7.52 g L–1and 21.5 g L–1 mannosylerythritol lipids at shake flask and fermenter level respectively. The structure and functional groups of mannosylerythritol lipids were confirmed by fourier transform infrared (FTIR) spectroscopy, liquid chromatography-mass spectrometry (LC/MS) and 1H- and 13C-nuclear magnetic resonance (NMR) analysis. Surfactant properties, such as surface tension, critical micelle concentration, foaming and emulsification of mannosylerythritol lipids were also explored.
Collapse
|
15
|
The role of transport proteins in the production of microbial glycolipid biosurfactants. Appl Microbiol Biotechnol 2021; 105:1779-1793. [PMID: 33576882 DOI: 10.1007/s00253-021-11156-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/20/2023]
Abstract
Several microorganisms are currently being used as production platform for glycolipid biosurfactants, providing a greener alternative to chemical biosurfactants. One of the reasons why these processes are commercially competitive is the fact that microbial producers can efficiently export their product to the extracellular environment, reaching high product titers. Glycolipid biosynthetic genes are often found in a dedicated cluster, amidst which genes encoding a dedicated transporter committed to shuttle the glycolipid to the extracellular environment are often found, as is the case for many other secondary metabolites. Knowing this, one can rely on gene clustering features to screen for novel putative transporters, as described and performed in this review. The above strategy proves to be very powerful to identify glycolipid transporters in fungi but is less valid for bacterial systems. Indeed, the genetics of these export systems are currently largely unknown, but some hints are given. Apart from the direct export of the glycolipid, several other transport systems have an indirect effect on glycolipid production. Specific importers dictate which hydrophilic and hydrophobic substrates can be used for production and influence the final yields. In eukaryotes, cellular compartmentalization allows the assembly of glycolipid building blocks in a highly specialized and efficient way. Yet, this requires controlled transport across intracellular membranes. Next to the direct export of glycolipids, the current state of the art regarding this indirect involvement of transporter systems in microbial glycolipid synthesis is summarized in this review. KEY POINTS: • Transporters are directly and indirectly involved in microbial glycolipid synthesis. • Yeast glycolipid transporters are found in their biosynthetic gene cluster. • Hydrophilic and hydrophobic substrate uptake influence microbial glycolipid synthesis.
Collapse
|
16
|
Beck A, Zibek S. Growth Behavior of Selected Ustilaginaceae Fungi Used for Mannosylerythritol Lipid (MEL) Biosurfactant Production - Evaluation of a Defined Culture Medium. Front Bioeng Biotechnol 2020; 8:555280. [PMID: 33195120 PMCID: PMC7609910 DOI: 10.3389/fbioe.2020.555280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Fungi of the Ustilaginaceae family are a promising source for many biotechnologically relevant products. Among these, mannosylerythritol lipid (MEL) biosurfactants have drawn a special interested over the last decades due to their manifold application possibilities. Nevertheless, there is still a knowledge gap regarding process engineering of MEL production. As an example, no reports on the use of a chemically defined culture medium have been published yet, although such a defined medium might be beneficial for scaling-up the production process toward industrial scale. Our aim therefore was to find a mineral medium that allows fast biomass growth and does not negatively affect the successive MEL production from plant oils. The results showed comparable growth performance between the newly evaluated mineral medium and the established yeast extract medium for all seven investigated Ustilaginaceae species. Final biomass concentrations and specific growth rates of 0.16-0.25 h–1 were similar for the two media. Oxygen demand was generally higher in the mineral medium than in the yeast extract medium. It was shown that high concentrations of vitamins and trace elements were necessary to support the growth. Increasing starting concentrations of the media by a factor of 10 resulted in proportionally increasing final biomass concentrations and up to 2.3-times higher maximum growth rates for all species. However, it could also lead to oxygen limitation and stagnant growth rates when too high medium concentrations were used, which was observed for Ustilago siamensis and Moesziomyces aphidis. Successive MEL production from rapeseed oil was effectively shown for 4 out of 7 organisms when the mineral medium was used for cell growth, and it was even enhanced for two organisms, M. aphidis and Pseudozyma hubeiensis pro tem., as compared to the established yeast extract medium. Conversion of rapeseed oil into MEL was generally improved when higher biomass concentrations were achieved during the initial growth phase, indicating a positive relationship between biomass concentration and MEL production. Overall, this is the first report on the use of a chemically defined mineral medium for the cell growth of Ustilaginaceae fungi and successive MEL production from rapeseed oil, as an alternative to the commonly employed yeast extract medium.
Collapse
Affiliation(s)
- Alexander Beck
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Susanne Zibek
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany.,Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| |
Collapse
|
17
|
Akkermans V, Verstraete R, Braem C, D'aes J, Dries J. Mannosylerythritol Lipid Production from Oleaginous Yeast Cell Lysate byMoesziomyces aphidis. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2019.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Veerle Akkermans
- Faculty of Applied Engineering, University of Antwerp, Antwerpen, Belgium
| | - Ruben Verstraete
- Faculty of Applied Engineering, University of Antwerp, Antwerpen, Belgium
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Caroline Braem
- Department of Industrial Sciences and Technology, Karel de Grote University College, Hoboken, Belgium
| | - Jolien D'aes
- Faculty of Applied Engineering, University of Antwerp, Antwerpen, Belgium
| | - Jan Dries
- Faculty of Applied Engineering, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
18
|
High-Quality Draft Genome Sequence and Annotation of the Basidiomycete Yeast Sporisorium graminicola CBS10092, a Producer of Mannosylerythritol Lipids. Microbiol Resour Announc 2019; 8:8/42/e00479-19. [PMID: 31624158 PMCID: PMC6797523 DOI: 10.1128/mra.00479-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The basidiomycete Sporisorium graminicola (formally Pseudozyma graminicola) strain CBS10092 was originally isolated from an herbaceous plant in Russia. It is a known producer of mannosylerythritol lipids (MELs), the main component being MEL-C. Here, we present the 19.9-Mb draft genome sequence, which comprises 6,602 genes, including those encoding the MEL biosynthetic pathway. The basidiomycete Sporisorium graminicola (formally Pseudozyma graminicola) strain CBS10092 was originally isolated from an herbaceous plant in Russia. It is a known producer of mannosylerythritol lipids (MELs), the main component being MEL-C. Here, we present the 19.9-Mb draft genome sequence, which comprises 6,602 genes, including those encoding the MEL biosynthetic pathway.
Collapse
|
19
|
Mamo G. Alkaline Active Hemicellulases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:245-291. [PMID: 31372682 DOI: 10.1007/10_2019_101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Xylan and mannan are the two most abundant hemicelluloses, and enzymes that modify these polysaccharides are prominent hemicellulases with immense biotechnological importance. Among these enzymes, xylanases and mannanases which play the vital role in the hydrolysis of xylan and mannan, respectively, attracted a great deal of interest. These hemicellulases have got applications in food, feed, bioethanol, pulp and paper, chemical, and beverage producing industries as well as in biorefineries and environmental biotechnology. The great majority of the enzymes used in these applications are optimally active in mildly acidic to neutral range. However, in recent years, alkaline active enzymes have also become increasingly important. This is mainly due to some benefits of utilizing alkaline active hemicellulases over that of neutral or acid active enzymes. One of the advantages is that the alkaline active enzymes are most suitable to applications that require high pH such as Kraft pulp delignification, detergent formulation, and cotton bioscouring. The other benefit is related to the better solubility of hemicelluloses at high pH. Since the efficiency of enzymatic hydrolysis is often positively correlated to substrate solubility, the hydrolysis of hemicelluloses can be more efficient if performed at high pH. High pH hydrolysis requires the use of alkaline active enzymes. Moreover, alkaline extraction is the most common hemicellulose extraction method, and direct hydrolysis of the alkali-extracted hemicellulose could be of great interest in the valorization of hemicellulose. Direct hydrolysis avoids the time-consuming extensive washing, and neutralization processes required if non-alkaline active enzymes are opted to be used. Furthermore, most alkaline active enzymes are relatively active in a wide range of pH, and at least some of them are significantly or even optimally active in slightly acidic to neutral pH range. Such enzymes can be eligible for non-alkaline applications such as in feed, food, and beverage industries.This chapter largely focuses on the most important alkaline active hemicellulases, endo-β-1,4-xylanases and β-mannanases. It summarizes the relevant catalytic properties, structural features, as well as the real and potential applications of these remarkable hemicellulases in textile, paper and pulp, detergent, feed, food, and prebiotic producing industries. In addition, the chapter depicts the role of these extremozymes in valorization of hemicelluloses to platform chemicals and alike in biorefineries. It also reviews hemicelluloses and discusses their biotechnological importance.
Collapse
|
20
|
Production of xylanolytic enzymes by Moesziomyces spp. using xylose, xylan and brewery's spent grain as substrates. N Biotechnol 2018; 49:137-143. [PMID: 30423436 DOI: 10.1016/j.nbt.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 11/22/2022]
Abstract
Xylanases play a crucial role in the hydrolysis of xylan-rich hemicelluloses and have wide industrial applications in the fuel, food, feed and pulp and paper industries. The production of these enzymes at low cost is of paramount importance for their commercial deployment. Moesziomyces antarcticus PYCC 5048T and M. aphidis PYCC 5535T were screened for their ability to produce xylanolytic enzymes when grown on d-xylose, xylan (beechwood) and brewery's spent grain (BSG). The extracellular crude extracts produced were characterized and tested in xylan hydrolysis. The yeasts produced xylanolytic enzymes without cellulolytic activity on all the substrates tested. The highest xylanase volumetric activity was obtained with M. aphidis PYCC 5535T grown on BSG, reaching 518.2 U/ml, a value 8.4- and 4.7-fold higher than those achieved on xylan and d-xylose, respectively. The xylanase activities were characterized in relation to pH and temperature with optima at 4.5 and 50 °C, respectively. The extracts from both M. antarcticus PYCC 5048Tand M. aphidis PYCC 5535T were used in xylan hydrolysis, producing d-xylose as the major end product (0.43 and 0.34-0.47 gD-xylose/gxylan, respectively, at 50 °C) and relatively low or no xylobiose accumulation (from no detection to 0.12 gD-xylobiose/gxylan at 50 °C).
Collapse
|
21
|
Biotechnological production of value-added compounds by ustilaginomycetous yeasts. Appl Microbiol Biotechnol 2017; 101:7789-7809. [DOI: 10.1007/s00253-017-8516-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 11/30/2022]
|
22
|
Martins GM, Bocchini-Martins DA, Bezzerra-Bussoli C, Pagnocca FC, Boscolo M, Monteiro DA, Silva RD, Gomes E. The isolation of pentose-assimilating yeasts and their xylose fermentation potential. Braz J Microbiol 2017; 49:162-168. [PMID: 28888830 PMCID: PMC5790582 DOI: 10.1016/j.bjm.2016.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/05/2016] [Accepted: 11/13/2016] [Indexed: 11/19/2022] Open
Abstract
For the implementation of cellulosic ethanol technology, the maximum use of lignocellulosic materials is important to increase efficiency and to reduce costs. In this context, appropriate use of the pentose released by hemicellulose hydrolysis could improve de economic viability of this process. Since the Saccharomyces cerevisiae is unable to ferment the pentose, the search for pentose-fermenting microorganisms could be an alternative. In this work, the isolation of yeast strains from decaying vegetal materials, flowers, fruits and insects and their application for assimilation and alcoholic fermentation of xylose were carried out. From a total of 30 isolated strains, 12 were able to assimilate 30 g L−1 of xylose in 120 h. The strain Candida tropicalis S4 produced 6 g L−1 of ethanol from 56 g L−1 of xylose, while the strain C. tropicalis E2 produced 22 g L−1 of xylitol. The strains Candida oleophila G10.1 and Metschnikowia koreensis G18 consumed significant amount of xylose in aerobic cultivation releasing non-identified metabolites. The different materials in environment were source for pentose-assimilating yeast with variable metabolic profile.
Collapse
Affiliation(s)
- Gisele Marta Martins
- Universidade Estadual Paulista(UNESP), Instituto de Pesquisa em Bioenergia-IPBen, Laboratório de Microbiologia aplicada, São José do Rio Preto, SP, Brazil
| | | | - Carolina Bezzerra-Bussoli
- Universidade Estadual Paulista(UNESP), Instituto de Pesquisa em Bioenergia-IPBen, Laboratório de Microbiologia aplicada, São José do Rio Preto, SP, Brazil
| | - Fernando Carlos Pagnocca
- Universidade Estadual Paulista-UNESP, Centro de Estudos de Insetos Sociais-Ceis, Campus of Rio Claro, SP, Brazil
| | - Maurício Boscolo
- Universidade Estadual Paulista(UNESP), Instituto de Pesquisa em Bioenergia-IPBen, Laboratório de Microbiologia aplicada, São José do Rio Preto, SP, Brazil
| | - Diego Alves Monteiro
- Universidade Estadual Paulista(UNESP), Instituto de Pesquisa em Bioenergia-IPBen, Laboratório de Microbiologia aplicada, São José do Rio Preto, SP, Brazil
| | - Roberto da Silva
- Universidade Estadual Paulista(UNESP), Instituto de Pesquisa em Bioenergia-IPBen, Laboratório de Microbiologia aplicada, São José do Rio Preto, SP, Brazil
| | - Eleni Gomes
- Universidade Estadual Paulista(UNESP), Instituto de Pesquisa em Bioenergia-IPBen, Laboratório de Microbiologia aplicada, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
23
|
Andrade CJD, Andrade LMD, Rocco SA, Sforça ML, Pastore GM, Jauregi P. A novel approach for the production and purification of mannosylerythritol lipids (MEL) by Pseudozyma tsukubaensis using cassava wastewater as substrate. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.02.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Pontifactin, a new lipopeptide biosurfactant produced by a marine Pontibacter korlensis strain SBK-47: Purification, characterization and its biological evaluation. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.09.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Paulino BN, Pessôa MG, Mano MCR, Molina G, Neri-Numa IA, Pastore GM. Current status in biotechnological production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol 2016; 100:10265-10293. [PMID: 27844141 DOI: 10.1007/s00253-016-7980-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 01/20/2023]
Abstract
Biosurfactants are natural compounds with surface activity and emulsifying properties produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. Glycolipids are promising biosurfactants, due to low toxicity, biodegradability, and chemical stability in different conditions and also because they have many biological activities, allowing wide applications in different fields. In this review, we addressed general information about families of glycolipids, rhamnolipids, sophorolipids, mannosylerythritol lipids, and trehalose lipids, describing their chemical and surface characteristics, recent studies using alternative substrates, and new strategies to improve of production, beyond their specificities. We focus in providing recent developments and trends in biotechnological process and medical and industrial applications.
Collapse
Affiliation(s)
- Bruno Nicolau Paulino
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil.
| | - Marina Gabriel Pessôa
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| | - Mario Cezar Rodrigues Mano
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| | - Gustavo Molina
- Institute of Science and Technology, Food Engineering, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Iramaia Angélica Neri-Numa
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| |
Collapse
|
26
|
Faria NT, Marques S, Fonseca C, Ferreira FC. Direct xylan conversion into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma antarctica PYCC 5048T. Enzyme Microb Technol 2015; 71:58-65. [DOI: 10.1016/j.enzmictec.2014.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
|