1
|
Shirkhan F, Mirdamadi S, Mirzaei M, Akbari-adergani B, Nasoohi N. In-vitro investigation of antidiabetic and antioxidants properties of major prebiotics and plant based dietary fibers. J Diabetes Metab Disord 2025; 24:105. [PMID: 40248820 PMCID: PMC11999920 DOI: 10.1007/s40200-025-01610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/14/2025] [Indexed: 04/19/2025]
Abstract
Objectives Consuming prebiotics and plant-based dietary fibers are important as an emerging approach to diabetes and oxidative stress control. In this study, the functional properties of major prebiotics and dietary fibers were evaluated. Methods The hypoglycemic properties were analyzed by inhibiting α-amylase and α-glucosidase, glucose adsorption capacity, and glucose diffusion. Antioxidant capacity, total phenolic (TP), and flavonoid (TF) content were also measured. Results The results showed that among prebiotics, isomaltulose and pectin had antidiabetic activity by α-amylase (IC50 = 11.36 mg/mL) and α-glucosidase (IC50 = 2.38 mg/mL) inhibition. Isomaltulose and pectin exhibited the ability to adsorb glucose capacity. Inulin HP showed the ability to inhibit glucose diffusion. The results also showed that all prebiotics impart antioxidant activity and TP, and TF content in a dose-dependent manner (p < 0.05). Pectin showed a higher ability to scavenge 1,1-diphenyl-2 picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sul-fonate (ABTS) radicals with higher phenolic compound (p < 0.05). Therefore, it seems that pectin was able to reduce the rate of glucose adsorption, regulate glucose adsorption by enzyme activity inhibition, and increase antioxidant capacity. Conclusion The results revealed that the prebiotics were efficient in their antidiabetic potential and could act as bio-functional materials. Using prebiotics in functional foods and nutraceutical medicines is strongly recommended.
Collapse
Affiliation(s)
- Faezeh Shirkhan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, 19496-35881 Iran
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, 33131-93685 Iran
| | - Mahta Mirzaei
- Centre for Food Chemistry and Technology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, South Korea
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000 Belgium
| | - Behrouz Akbari-adergani
- Water Safety Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, 11136-15911 Iran
| | - Nikoo Nasoohi
- Department of Biochemistry and Biophysics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 19396-77511 Iran
| |
Collapse
|
2
|
Jaiswal N, Kandpal M, Jha HC, Kumar A. Collective in-silico and in-vitro evaluation indicate natural phenolics as a potential therapeutic candidate targeting antimicrobial-resistant genes of Helicobacter pylori. Int J Biol Macromol 2025; 307:142197. [PMID: 40107545 DOI: 10.1016/j.ijbiomac.2025.142197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/28/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Antibiotic-resistant Helicobacter pylori is a major cause of severe gastric conditions such as ulcers and gastric cancer, with limited treatment options due to the rise of multidrug-resistant strains. This study aims to identify novel drug targets within antimicrobial resistance (AMR) genes and evaluate potential therapeutic candidates using computational and experimental approaches. AMR genes in H. pylori were identified using RAST and their essentiality, metabolic pathways, and druggability. Localization, protein family, and functional annotations were performed using QuickGO and Pfam, while Cytoscape was used for protein interaction analysis and identification of hub proteins. Ddl was selected as the target protein for further study among the AMR genes. Using the PASS tool, two phenolic compounds were identified as potential inhibitors of Ddl, and their interaction potency was confirmed through molecular docking studies. In-vitro experiments demonstrated that α-mangostin significantly attenuated H. pylori-mediated inflammatory responses in the gastric environment. Notably, α-mangostin induced the mitochondrial-mediated intrinsic apoptotic pathway in gastric epithelial cells, offering new insights into its therapeutic potential. This study identified Ddl as a promising drug target among AMR genes in H. pylori and highlighted phenolic compounds, particularly α-mangostin, as potential inhibitors. These findings contribute to the development of novel anti-H. pylori therapies address the growing challenge of antibiotic resistance and pave the way for future research into effective treatments for H. pylori infections.
Collapse
Affiliation(s)
- Neha Jaiswal
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India.
| |
Collapse
|
3
|
Rini DM, Xu W, Suzuki T. Current Research on the Role of Isomaltooligosaccharides in Gastrointestinal Health and Metabolic Diseases. Prev Nutr Food Sci 2024; 29:93-105. [PMID: 38974594 PMCID: PMC11223922 DOI: 10.3746/pnf.2024.29.2.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 07/09/2024] Open
Abstract
The intestinal epithelium plays an important role in maintaining the intestinal barrier and facilitating nutrient absorption. It also serves as a critical physical barrier against the infiltration of foreign substances from the intestinal lumen into the circulation. Intestinal barrier dysfunction has been implicated in the development of several diseases. Isomaltooligosaccharides (IMOs), which are a type of dietary fiber, possess multiple health benefits. However, there is limited information regarding their efficacy against gastrointestinal diseases. This review explores the therapeutic potential of IMOs in obesity, diabetes mellitus, inflammatory bowel disease (IBD), hyperlipidemia, and constipation. High-fat diet (HFD)-induced obesity models have shown that IMOs, administered alone or in combination with other compounds, exhibit potent antiobesity effects, making them promising agents in the treatment of obesity and its associated complications. Moreover, IMOs exhibit preventive effects against HFD-induced metabolic dysfunction by modulating gut microbiota and short-chain fatty acid levels, thereby ameliorating symptoms. Furthermore, IMOs can reduce IBD and alleviate hyperlipidemia, as indicated by the reduced histological colitis scores and improved lipid profiles observed in clinical trials and animal studies. This review highlights IMOs as a versatile intervention strategy that can improve gastrointestinal health by modulating gut microbiota, immune responses, and metabolic parameters, providing a multifaceted approach to address the complex nature of gastrointestinal disorders.
Collapse
Affiliation(s)
- Dina Mustika Rini
- Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia
| | - Wenxi Xu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
4
|
Setiawan RD, Melia S, Juliyarsi I, Rusdimansyah. Investigation of Stingless Bee Honey from West Sumatra as an Antihyperglycemic Food. Prev Nutr Food Sci 2024; 29:170-177. [PMID: 38974587 PMCID: PMC11223919 DOI: 10.3746/pnf.2024.29.2.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 07/09/2024] Open
Abstract
This study aimed to investigate the potential in vitro antihyperglycemic activity of honey sourced from three different species of stingless bees (Heterotrigona itama, Geniotrigona thoracica, and Kelulut matahari) by assessing their α-glucosidase enzyme inhibition, antioxidant activity, and total phenolic and flavonoid contents in comparison with honey from Apis cerana, obtained from West Sumatra, Indonesia. The honey samples were obtained from stingless bee farms at the Faculty of Animal Science, Universitas Andalas. Variations were observed in α-glucosidase enzyme inhibition, antioxidant activity (half maximal inhibitory concentration, IC50), and total phenolic and flavonoid contents among the honey samples from H. itama, G. thoracica, K. matahari, and A. cerana. In terms of α-glucosidase inhibition, honey from the stinging bee A. cerana demonstrated higher inhibition than that from the other three stingless bees species. Honey derived from K. matahari exhibited the lowest IC50 value, indicating its superior antioxidant activity, followed by honey from A. cerana, H. itama, and G. thoracica. The highest total phenolic and flavonoid contents were found in honey from A. cerana, followed by honey from K. matahari, H. itama, and G. thoracica. Analysis using Fourier-transform infrared spectroscopy revealed that the predominant absorptions in all four honey samples were observed at 767∼1,643 cm-1, indicating that absorptions are primarily ascribed to monosaccharides and disaccharides. Additionally, some peaks implied the presence of phenolic and flavonoid compounds. Overall, honey from stingless bees shows promise as an antihyperglycemic food, as evidenced by its α-glucosidase enzyme inhibition activity, antioxidant activity, and relatively high total phenolic content.
Collapse
Affiliation(s)
- Rizki Dwi Setiawan
- Department of Animal Products Technology, Faculty of Animal Science, Universitas Andalas, Padang 25163, Indonesia
| | - Sri Melia
- Department of Animal Products Technology, Faculty of Animal Science, Universitas Andalas, Padang 25163, Indonesia
| | - Indri Juliyarsi
- Department of Animal Products Technology, Faculty of Animal Science, Universitas Andalas, Padang 25163, Indonesia
| | - Rusdimansyah
- Department of Animal Production, Faculty of Animal Science, Universitas Andalas, Padang 25163, Indonesia
| |
Collapse
|
5
|
Bhushan V, Bharti SK, Krishnan S, Kumar A, Kumar A. Antidiabetic effectiveness of Phyllanthus niruri bioactive compounds via targeting DPP-IV. Nat Prod Res 2024:1-7. [PMID: 38590294 DOI: 10.1080/14786419.2024.2337108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Phyllanthus niruri Linn. (Euphorbiaceae) is a small herb and is categorised as one of the rich medicinal plants throughout the world. This study aimed to evaluate the P. niruri L. whole plant extract (PNE) for secondary metabolite assay (total phenolic and terpenoid content) followed by the potential antioxidant activity (ABTS diammonium salt radical assay, DPPH· activity, superoxide anion (O2-) radicals' assay, and nitric oxide (NO) radical generation) and antidiabetic activity in vivo and in vitro in streptozotocin (STZ) induced albino mice. PNE showed good scavenging activity with a value of 286.45 ± 6.55 mg TE/g and 194.54 ± 4.64 mg TE/g in ABTS and DPPH assays respectively. In the superoxide anion assay, the PNE caused a dose-dependent inhibition at the lowest IC25 value of 0.17 ± 0.00 mg/mL compared to ascorbic acid (IC25 of 0.25 ± 0.02 mg/mL). The scavenging ability of PNE against nitric oxide showed an IC25 of 1.13 ± 0.04 mg/mL compared to ascorbic acid (IC25 4.78 ± 0.09 mg/mL). Unlike diabetic control mice, the PNE-treated diabetic mice presented significant amelioration of glycaemia and lipid dysmetabolism. Phytochemicals like Astragalin, Gallocatechin, Ellagic acid, Gallic acid, Brevifolin carboxylic acid, Phyllnirurin, and Hypophyllanthin showed significant docking score (> -4) of inhibitory potential with DPP-IV protein. Results indicated that PNE phytochemicals could be a promising antidiabetic agent by targeting DPP-IV.
Collapse
Affiliation(s)
- Vinay Bhushan
- Department of Biochemistry, Patna University, Patna, India
- Department of Botany, T.P.S. College, Patliputra University, Patna, India
| | | | - Supriya Krishnan
- Department of Personnel Management and Industrial Relations, Patna University, Patna, India
| | - Amit Kumar
- National Institute of Cancer Prevention and Research, Noida, India
- ICMR Computational Genomics Centre, Biomedical Informatics Division, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| |
Collapse
|
6
|
Chhabria S, Mathur S, Vadakan S, Sahoo DK, Mishra P, Paital B. A review on phytochemical and pharmacological facets of tropical ethnomedicinal plants as reformed DPP-IV inhibitors to regulate incretin activity. Front Endocrinol (Lausanne) 2022; 13:1027237. [PMID: 36440220 PMCID: PMC9691845 DOI: 10.3389/fendo.2022.1027237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus is a metabolic disorder resulting from impaired insulin secretion and resistance. Dipeptidyl peptidase (DPP)-IV is an enzyme known to trigger the catalysis of insulinotropic hormones, further abating the endogenous insulin levels and elevating the glucose levels in blood plasma. In the field of drug development, DPP-IV inhibitors have opened up numerous opportunities for leveraging this target to generate compounds as hypoglycemic agents by regulating incretin activity and subsequently decreasing blood glucose levels. However, the practice of synthetic drugs is an apparent choice but poses a great pharmacovigilance issue due to their incessant undesirable effects. The ideology was set to inventively look upon different ethnomedicinal plants for their anti-diabetic properties to address these issues. To date, myriads of phytochemicals are characterized, eliciting an anti-diabetic response by targeting various enzymes and augmenting glucose homeostasis. Antioxidants have played a crucial role in alleviating the symptoms of diabetes by scavenging free radicals or treating the underlying causes of metabolic disorders and reducing free radical formation. Plant-based DPP-IV inhibitors, including alkaloids, phenolic acid, flavonoids, quercetin, and coumarin, also possess antioxidant capabilities, providing anti-diabetic and antioxidative protection. This review article provides a new gateway for exploring the ability of plant-based DPP-IV inhibitors to withstand oxidative stress under pathological conditions related to diabetes and for reforming the strategic role of ethnomedicinal plants as potent DPP-IV inhibitors through the development of polyherbal formulations and nanophytomedicines to regulate incretin activity.
Collapse
Affiliation(s)
- Srishti Chhabria
- Department of Biochemistry and Biotechnology, St Xavier’s College, Ahmedabad, India
- Department of Biotechnology, Gujarat University, Ahmedabad, India
| | - Shivangi Mathur
- Department of Biotechnology, Gujarat University, Ahmedabad, India
- Department of Biotechnology, President Science College, Ahmedabad, India
| | - Sebastian Vadakan
- Department of Biochemistry and Biotechnology, St Xavier’s College, Ahmedabad, India
- Department of Biotechnology, Gujarat University, Ahmedabad, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Biswaranjan Paital, ; Dipak Kumar Sahoo, ;
| | - Pragnyashree Mishra
- Department of Horticulture, College of Agriculture, Odisha University of Agriculture and Technology, Chipilima, Sambalpur, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
- *Correspondence: Biswaranjan Paital, ; Dipak Kumar Sahoo, ;
| |
Collapse
|
7
|
Palaniappan A, Emmambux MN. The challenges in production technology, health-associated functions, physico-chemical properties and food applications of isomaltooligosaccharides. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34698594 DOI: 10.1080/10408398.2021.1994522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Isomaltooligosaccharides (IMOs) are recognized as functional food ingredients with prebiotic potential that deliver health benefits. IMOs have attained commercial interest as they are produced from low-cost agricultural products that are widely available and have prospective applications in the food industry. The review examines the various production processes and the main challenges involved in deriving diverse structures of IMO with maximized yield and increased functionality. The different characterization and purification techniques employed for structural elucidation, the physico-chemical importance, technological properties, food-based applications and biological effects (in vitro and in vivo interventions) have been discussed in detail. The key finding is the need for research involving biotechnological and enzymology aspects to simplify the production technologies that meet the industrial and consumer requirements. The knowledge from this article delivers a clear insight to scientists, food technologists and the general public for the improved utilization of IMOs to support the emerging market for functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Ayyappan Palaniappan
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Mohammad Naushad Emmambux
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Paulo AFS, Baú TR, Ida EI, Shirai MA. Edible coatings and films with incorporation of prebiotics -A review. Food Res Int 2021; 148:110629. [PMID: 34507773 DOI: 10.1016/j.foodres.2021.110629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Prebiotics are compounds naturally present in some foods or can be synthesized by microorganisms and enzymes. Among the benefits associated with prebiotic consumption are the modulation of the intestinal microbiota that increase the production of short chain fatty acids and prevent the development of some disorders such as colon cancer, irritable bowel syndrome, diabetes, obesity, among others. Traditionally, prebiotics have been used in diverse food formulations to enhance their healthy potential or to improve their technological and sensory properties. However, different alternatives for the production of prebiotic products are being explored, such as edible coatings and films. Therefore, this review aims to highlight recent research on edible coatings and films incorporated with different prebiotics, the concept of prebiotics, the general characteristics of these materials, and the main production methods, as well as presenting the perspectives of uses in the food industry. Current works describe that polyols and oligosaccharides are the most employed prebiotics, and depending on their structure and concentration, they can also act as film plasticizer or reinforcement agent. The use of prebiotic in the coating can also improve probiotic bacteria survival making it possible to obtain fruits and vegetables with synbiotic properties. The most common method of production is casting, suggesting that other technologies such as extrusion can be explored aiming industrial scale. The use of film and coating carried of prebiotic is an emerging technology and there are still several possibilities for study to enable its use in the food industry. This review will be useful to detect the current situation, identify problems, verify new features, future trends and support new investigations and investments.
Collapse
Affiliation(s)
- Ana Flávia Sampaio Paulo
- Post-graduation Program of Food Technology, Federal University of Technology - Paraná, Londrina, PR, Brazil
| | - Tahis Regina Baú
- Food Technology Coordination, Federal Institute of Santa Catarina, São Miguel do Oeste, SC, Brazil
| | - Elza Iouko Ida
- Post-graduation Program of Food Technology, Federal University of Technology - Paraná, Londrina, PR, Brazil
| | - Marianne Ayumi Shirai
- Post-graduation Program of Food Technology, Federal University of Technology - Paraná, Londrina, PR, Brazil.
| |
Collapse
|
9
|
Novel and emerging prebiotics: Advances and opportunities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:41-95. [PMID: 33745516 DOI: 10.1016/bs.afnr.2020.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Consumers are conscientiously changing their eating preferences toward healthier options, such as functional foods enriched with pre- and probiotics. Prebiotics are attractive bioactive compounds with multidimensional beneficial action on both human and animal health, namely on the gastrointestinal tract, cardiometabolism, bones or mental health. Conventionally, prebiotics are non-digestible carbohydrates which generally present favorable organoleptic properties, temperature and acidic stability, and are considered interesting food ingredients. However, according to the current definition of prebiotics, application categories other than food are accepted, as well as non-carbohydrate substrates and bioactivity at extra-intestinal sites. Regulatory issues are considered a major concern for prebiotics since a clear understanding and application of these compounds among the consumers, regulators, scientists, suppliers or manufacturers, health-care providers and standards or recommendation-setting organizations are of utmost importance. Prebiotics can be divided in several categories according to their development and regulatory status. Inulin, galactooligosaccharides, fructooligosaccharides and lactulose are generally classified as well established prebiotics. Xylooligosaccharides, isomaltooligosaccharides, chitooligosaccharides and lactosucrose are classified as "emerging" prebiotics, while raffinose, neoagaro-oligosaccharides and epilactose are "under development." Other substances, such as human milk oligosaccharides, polyphenols, polyunsaturated fatty acids, proteins, protein hydrolysates and peptides are considered "new candidates." This chapter will encompass actual information about the non-established prebiotics, mainly their physicochemical properties, market, legislation, biological activity and possible applications. Generally, there is a lack of clear demonstrations about the effective health benefits associated with all the non-established prebiotics. Overcoming this limitation will undoubtedly increase the demand for these compounds and their market size will follow the consumer's trend.
Collapse
|
10
|
Li Z, Hu G, Zhu L, Sun Z, Jiang Y, Gao MJ, Zhan X. Study of growth, metabolism, and morphology of Akkermansia muciniphila with an in vitro advanced bionic intestinal reactor. BMC Microbiol 2021; 21:61. [PMID: 33622254 PMCID: PMC7901181 DOI: 10.1186/s12866-021-02111-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
Background As a kind of potential probiotic, Akkermansia muciniphila abundance in human body is directly causally related to obesity, diabetes, inflammation and abnormal metabolism. In this study, A. muciniphila dynamic cultures using five different media were implemented in an in vitro bionic intestinal reactor for the first time instead of the traditional static culture using brain heart infusion broth (BHI) or BHI + porcine mucin (BPM). Results The biomass under dynamic culture using BPM reached 1.92 g/L, which improved 44.36% compared with the value under static culture using BPM. The biomass under dynamic culture using human mucin (HM) further increased to the highest level of 2.89 g/L. Under dynamic culture using porcine mucin (PM) and HM, the main metabolites were short-chain fatty acids (acetic acid and butyric acid), while using other media, a considerable amount of branched-chain fatty acids (isobutyric and isovaleric acids) were produced. Under dynamic culture Using HM, the cell diameters reached 999 nm, and the outer membrane protein concentration reached the highest level of 26.26 μg/mg. Conclusions This study provided a preliminary theoretical basis for the development of A. muciniphila as the next generation probiotic. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02111-7.
Collapse
Affiliation(s)
- Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guoao Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Li Zhu
- Wuxi Galaxy Biotech Co. Ltd., Wuxi, 214125, China
| | - Zhenglong Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Min-Jie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
Targeting type II diabetes with plant terpenes: the new and promising antidiabetic therapeutics. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00575-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Isomalto-oligosaccharides: Recent insights in production technology and their use for food and medical applications. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.098] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Raffinose from Costus speciosus attenuates lipid synthesis through modulation of PPARs/SREBP1c and improves insulin sensitivity through PI3K/AKT. Chem Biol Interact 2018; 284:80-89. [PMID: 29458019 DOI: 10.1016/j.cbi.2018.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/15/2018] [Accepted: 02/12/2018] [Indexed: 11/22/2022]
Abstract
Among several metabolic disorders, the pathogenesis of insulin resistance is considered to be multifactorial. Raffinose, an oligosaccharide isolated from the rhizome of Costus speciosus showed ≤50% inhibition of lipid accumulation in differentiated HepG2 and 3T3-L1 cells through exhibiting partial agonism to PPARγ, and, an enhanced secretion of adiponectin in 3T3-L1 adipocytes. Raffinose was also observed to attenuate the expression of SREBP1c, ACC and FAS which are involved in the fatty acid synthesis. A corresponding upregulation of PPARα and ACO involved in fatty acid oxidation was observed in steatotic HepG2 hepatocytes and 3T3-L1 adipocytes. In vitro evaluation of its anti-diabetic potential showed a dose dependent enhancement of glucose uptake. Investigation of the insulin sensitizing efficacy of Raffinose revealed an increase in Glut4 translocation via phosphorylation of IRβ/PI3K/Akt in differentiated L6 myocytes and 3T3-L1 preadipocytes. In addition, Raffinose was potentially involved in glycogen synthesis by inhibiting the activation of GSK3β. Hence, Raffinose could be a useful therapeutic agent for metabolic maladies.
Collapse
|
14
|
Continuous Production of Isomalto-oligosaccharides by Thermo-inactivated Cells of Aspergillus niger J2 with Coarse Perlite as an Immobilizing Material. Appl Biochem Biotechnol 2018; 185:1088-1099. [PMID: 29435830 DOI: 10.1007/s12010-018-2706-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
Abstract
The coarse perlite 40-80 mesh was selected as an immobilizing material and put into a packed bed reactor (PBR) to continuously convert maltose to isomalto-oligosaccharides (IMOs). The PBR was prepared by mixing the thermo-inactivated cells (TIC) from Aspergillus niger J2 strain with the coarse perlite, then the mixture was put into an overpressure-resistant column. Compared with diatomite 40-80 mesh and thin perlite 80-120 mesh in PBR, coarse perlite was chosen as the best filtration aid, when the ratio of coarse perlite versus TIC was 1:1. The thermal and pH stability of the free and immobilized TIC and the optimum conditions for the transglycosylation reactions were determined. The results show that approximately 75 and 82% and 87 and 91% of α-glucosidase activity were reserved for free and immobilized TIC at temperatures from 30 to 60 °C and pH from 3.00 to 7.00 for 12 h, respectively. With 30% malt syrup under the conditions of 50 °C and pH 4.00, a mini-scale packed bed reactor (Mi-PBR) and medium-scale packed bed reactor (Me-PBR) could continuously produce IMO over 25 and 34 days with the yield of effective IMO (eIMO) ≥ 35% and total IMO (tIMO) ≥ 50%, respectively. The strategy of mixing the coarse perlite with TIC in PBR is a novel approach to continuously produce IMO and has great application potential in industry.
Collapse
|
15
|
Sorndech W, Tongta S, Blennow A. Slowly Digestible‐ and Non‐Digestible α‐Glucans: An Enzymatic Approach to Starch Modification and Nutritional Effects. STARCH-STARKE 2017. [DOI: 10.1002/star.201700145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Waraporn Sorndech
- School of Food Technology Institute of Agricultural Technology Suranaree University of TechnologyNakhon Ratchasima 30000Thailand
| | - Sunanta Tongta
- School of Food Technology Institute of Agricultural Technology Suranaree University of TechnologyNakhon Ratchasima 30000Thailand
| | - Andreas Blennow
- Faculty of Sciences Department of Plant and Environmental Sciences University of CopenhagenFrederiksberg C 1871Denmark
| |
Collapse
|
16
|
Zhao B, Zhou L, Ma L, He Y, Gao J, Li D, Jiang Y. Co-immobilization of glucose oxidase and catalase in silica inverse opals for glucose removal from commercial isomaltooligosaccharide. Int J Biol Macromol 2017; 107:2034-2043. [PMID: 29051100 DOI: 10.1016/j.ijbiomac.2017.10.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
In this work, glucose oxidase (GOD) and catalase (CAT) were co-immobilized on novel silica inverse opals (IO-SiO2) through sol-gel process. The immobilized bi-enzyme system named GOD/CAT@IO-SiO2 was successfully fabricated and characterized. Morphology characterization indicated that GOD/CAT@IO-SiO2 had hierarchical porous structure, and the pore diameter of macroporous and mesoporous were 500±50nm and 6.8nm, respectively. The macrospores were connected through windows of 100±30nm. The results of stability tests indicated that both acid (or base) resistance and thermal tolerance of GOD/CAT@IO-SiO2 were improved. When GOD/CAT@IO-SiO2 was used to remove glucose from commercial isomaltooligosaccharide (IMO), the immobilized bi-enzyme system exhibited the good performance. The removal efficiency of glucose reached up to 98.97% under the conditions of GOD/CAT activity ratio of 1:30, the amount of enzyme of 68.8mg, reaction time of 9.39h, reaction temperature of 35.2°C and pH of 7.05. After reused 6 times, 79.19% of removal efficiency could be still retained. The present work demonstrates that the immobilized bi-enzyme (GOD/CAT@IO-SiO2) is not only a very promising system for glucose removal but also has great potential for applications in production of gluconic acid, preparation of biosensors, enzyme bioreactors, etc.
Collapse
Affiliation(s)
- Bin Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Dan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
17
|
Panigrahy SK, Kumar A, Bhatt R. Antioxidant potentials of successive solvent extracts from the unexplored Hedhychium coronarium rhizome. Journal of Food Science and Technology 2017; 54:3297-3306. [PMID: 28974815 DOI: 10.1007/s13197-017-2777-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 11/26/2022]
Abstract
Hedychium coronarium Koen. is considered as an endemic medicinal plant. In the current research antioxidant potential of six different extracts obtained by the successive solvent extraction method from the unexplored H. coronarium rhizome was evaluated. Various in vitro assays were performed to achieve the aim and variation in scavenging potential of the six extracts, in addition to quantification of phenolic and flavonoid compounds was done by HPLC. Among the six extracts, methanolic extract have showed highest Total phenolic content (TPC), metal chelation activity and free radical scavenging potential against DPPH, ABTS and superoxide anions as compared to other extracts. The highest scavenging potential against nitric oxide and hypochlorus acid was shown by acetone extract. The variation in anti-oxidant activity of the extracts may be due to the phyto-constituents present in different solvents. A significant correlation (r2 = 0.864) was established between antioxidant and TPC of H. coronarium from principle component analysis. Thus the present study provides strong evidence that rhizome extract of H. coronarium is a potential source of bioactive compounds and can be used as a remedy for diseases caused due to oxidative stress. Reported results could be helpful to develop novel drugs for the management of oxidative stress and associated diseases.
Collapse
Affiliation(s)
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, Chhattisgarh 492010 India
| | - Renu Bhatt
- Department of Biotechnology, Guru GhasidasVishwavidyalaya, Bilaspur, Chhattisgarh 495009 India
| |
Collapse
|
18
|
Zhao C, Wu Y, Liu X, Liu B, Cao H, Yu H, Sarker SD, Nahar L, Xiao J. Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides. Trends Food Sci Technol 2017; 66:135-145. [DOI: 10.1016/j.tifs.2017.06.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Highly efficient enzymatic preparation of isomalto-oligosaccharides from starch using an enzyme cocktail. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2016.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Basu A, Mutturi S, Prapulla SG. Production of isomaltooligosaccharides (IMO) using simultaneous saccharification and transglucosylation from starch and sustainable sources. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Panigrahy SK, Bhatt R, Kumar A. Reactive oxygen species: sources, consequences and targeted therapy in type 2 diabetes. J Drug Target 2016; 25:93-101. [PMID: 27356044 DOI: 10.1080/1061186x.2016.1207650] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oxidative stress has been considered as a central mediator in the progression of diabetic complication. The intracellular reactive oxygen species (ROS) leads to oxidative stress and it is raised from the mitochondria as well as by activation of five major pathways: increased polyol pathway flux, activation of protein kinase C (PKC) pathway, increased formation of advanced glycation end products (AGEs), over activity of hexosamine pathway and increased production of angiotensin II. The increased ROS through these pathways leads to β-cell dysfunction and insulin resistance, responsible for cell damage and death. This review not only highlights the sources of ROS production and their involvement in the progression of diabetes, but also emphasizes on pharmacological interventions and targeting of ROS in type 2 diabetes. This review summarizes the ROS as potential therapeutic targets, based on a putative mechanism in the progression of the diabetes. It also summarizes current knowledge of ROS activation in type 2 diabetes as well as ROS as a possible target for its treatment. Eventually, it would be a promising target for various strategies and drugs to modulate ROS levels in diabetes.
Collapse
Affiliation(s)
- Suchitra Kumari Panigrahy
- a Department of Biotechnology , Guru Ghasidas Vishwavidyalaya (a Central University) , Bilaspur , India
| | - Renu Bhatt
- a Department of Biotechnology , Guru Ghasidas Vishwavidyalaya (a Central University) , Bilaspur , India
| | - Awanish Kumar
- b Department of Biotechnology , National Institute of Technology (NIT) , Raipur , India
| |
Collapse
|
22
|
Lee S, Hanh NTT, Cho JY, Kim JY, Moon YH, Yeom SC, Kim GJ, Kim D. Glucooligosaccharide production by Leuconostoc mesenteroides fermentation with efficient pH control, using a calcium hydroxide-sucrose solution. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0587-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|