1
|
Yong J, Wang D, Kwok L, Mahmud SAZ, Hakobyan K, Lord MS, Mao G. Interfacial Interactions between Neural Tracing Lectin-Gold Nanoparticle Conjugate and Cell Membrane Glycoproteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10161-10176. [PMID: 40237069 PMCID: PMC12044695 DOI: 10.1021/acs.langmuir.4c05034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
The use of neural tracers as targeting molecules for drug delivery has been previously established as a novel and efficient method of neural drug delivery. The wheat germ agglutinin-horseradish peroxidase conjugate (WGAHRP) is a common neural tracer, which has been used extensively to decipher neural pathways in vertebrates. It has been widely reported to bind to cell surfaces and be transported in a retrograde fashion (from synapses toward the cell body) via dynein motors along microtubules within axons and transynaptically between neurons. Here we report on the differential binding between WGAHRP and gold-conjugated WGAHRP (AuNP-WGAHRP) to the glycoprotein profiles extracted from two neuronal cell lines and one skeletal muscle cell line, as well as the binding kinetics to heparin. From proteomic analysis of the extracted glycoproteins, we suggest the identity of cell surface glycoproteins involved in the retrograde transport of WGAHRP. This study illuminates the interfacial and molecular interactions of protein-gold conjugates with native ligands and opens the door for the identification of new targets for neural tracing and nervous system-related drug delivery.
Collapse
Affiliation(s)
- Joel Yong
- School
of Chemical Engineering, University of New
South Wales, Sydney 2052, Australia
| | - Dan Wang
- Graduate
School of Biomedical Engineering, University
of New South Wales, Sydney 2052, Australia
| | - Lachlan Kwok
- School
of Chemical Engineering, University of New
South Wales, Sydney 2052, Australia
| | - Sk Al Zaheri Mahmud
- School
of Chemical Engineering, University of New
South Wales, Sydney 2052, Australia
| | - Karen Hakobyan
- School
of Chemical Engineering, University of New
South Wales, Sydney 2052, Australia
| | - Megan S. Lord
- Graduate
School of Biomedical Engineering, University
of New South Wales, Sydney 2052, Australia
| | - Guangzhao Mao
- School
of Chemical Engineering, University of New
South Wales, Sydney 2052, Australia
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, U.K.
| |
Collapse
|
2
|
Functional Microfiber Nonwoven Fabric with Sialic Acid-Immobilized Polymer Brush for Capturing Lectin in Aerosol. Polymers (Basel) 2022; 14:polym14040663. [PMID: 35215575 PMCID: PMC8880166 DOI: 10.3390/polym14040663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/05/2022] Open
Abstract
The influenza virus has been known as a representative infectious virus that harms human health from the past to the present day. We have promoted the development of a novel adsorbent capable of adsorbing influenza viruses in the form of aerosols in the air. In this study, to develop a material to adsorb the influenza virus, a functional group was introduced into a microfiber nonwoven fabric (MNWF) manufactured through radiation-induced graft polymerization (RIGP), and sialic acid was immobilized to mimic the sugar chain cluster effect. The functional group was used by coupling disodium iminodiacetate monohydrate (IDA) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), and N-acetylneuraminic acid (NANA) was selected for sialic acid. IDA-EDC was introduced into GMA MNWF with an average molar conversion of 47%. For NANA MNWF with a degree of grafting (dg) of 87% introduced with sialic acid, 118.2 of 200 µg of aerosolized lectin was adsorbed, confirming that the maximum adsorption amount was 59.1%. In NANA MNWF of 100% or more dg, a tendency to decrease the amount of lectin adsorption was observed compared to NANA MNWF of 80–100% dg.
Collapse
|
3
|
Baieli MF, Urtasun N, Hirsch DB, Miranda MV, Cascone O, Wolman FJ. Single-step purification of equine chorionic gonadotrophin directly from plasma using affinity chromatography. J Biotechnol 2020; 323:174-179. [PMID: 32810526 DOI: 10.1016/j.jbiotec.2020.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 11/29/2022]
Abstract
Equine chorionic gonadotrophin (eCG) is a hormone widely used in superovulation protocols because of its follicle-stimulating action, which increases reproductive efficiency in animals of productive interest. It contains 45% carbohydrate, 10% of which is N-acetylneuraminic acid (sialic acid). The eCG purification procedures from equine serum or plasma are mainly based on chromatographic methods. However, before these procedures, it is necessary to follow sample pre-conditioning steps, such as several precipitation stages and/or ultrafiltration/diafiltration processes. In this work, an efficient affinity chromatographic matrix for eCG purification directly from plasma was developed. The matrix consisted of chitosan mini-spheres with immobilized wheat germ agglutinin (WGA). The matrix allowed 98% adsorption of eCG directly from plasma without any pre-treatment with an overall yield of around 60%. The matrix chosen was able to maintain the efficient performance of the purification process for three consecutive cycles. Also, the process was scaled-up 500 times in volume and tested over seven consecutive cycles maintaining its chromatographic performance. The results presented here suggest the potential application of this matrix to one-step purification of eCG from plasma.
Collapse
Affiliation(s)
- María Fernanda Baieli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina.
| | - Nicolás Urtasun
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
| | - Daniela Belén Hirsch
- CONICET - Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina
| | - María Victoria Miranda
- CONICET - Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina
| | - Osvaldo Cascone
- CONICET - Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina
| | - Federico Javier Wolman
- CONICET - Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina
| |
Collapse
|
4
|
Highly efficient production of rabies virus glycoprotein G ectodomain in Sf9 insect cells. 3 Biotech 2019; 9:385. [PMID: 31656723 DOI: 10.1007/s13205-019-1920-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022] Open
Abstract
In the present study, we developed a complete process to produce in insect cells a high amount of the ectodomain of rabies virus glycoprotein G (GE) as suitable antigen for detecting anti-rabies antibodies. Using the baculovirus expression vector system in Sf9 insect cells combined with a novel chimeric promoter (polh-pSeL), the expression level reached a yield of 4.1 ± 0.3 mg/L culture, which was significantly higher than that achieved with the standard polh promoter alone. The protein was recovered from the cell lysates and easily purified in only one step by metal ion affinity chromatography, with a yield of 95% and a purity of 87%. Finally, GE was successfully used in an assay to detect specific antibodies in serum samples derived from rabies-vaccinated animals. The efficient strategy developed in this work is an interesting method to produce high amounts of this glycoprotein.
Collapse
|
5
|
Ruan JJ, Weng WF, Yan J, Zhou YX, Chen H, Ren MJ, Cheng JP. Coix lacryma-jobi chymotrypsin inhibitor displays antifungal activity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:49-57. [PMID: 31519257 DOI: 10.1016/j.pestbp.2019.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
A novel chymotrypsin inhibitor, named ClCI, was purified from coix seed (Coix lacryma-jobi L.) by aqueous two-phase extraction, chymotrypsin-Sepharose 4B affinity chromatography and centrifugal ultrafiltration. ClCI was a 7.9 kDa competitive inhibitor with pI 6.54. The inhibition constants (Ki) for bovine pancreatic chymotrypsin and bacterial subtilisin were 1.27 × 10-10 M and 1.57 × 10-9 M respectively. ClCI had no inhibitory activity against bovine trypsin and porcine elastase. ClCI had wide pH stability and good heat resistance. It can maintain >90% inhibition activity against chymotrypsin at 20-80 °C for 1 h. The primary structure of ClCI was highly similar (57%-92%) to those of several inhibitors belonging to the Gramineae crop potato protease inhibitor- I superfamily and showed the typical sequence motif of the protease inhibitor of the seed storage protein group. ClCI (12.5 mg) inhibited mycelial growth of the phytopathogenic fungi Mycosphaerella melonis, Helminthosporium turcicum, Alternaria solani, Phytophthora capsici, Isariopsis griseola, and Colletotrichum gloeosporioides, and caused 89% inhibition of the proteases from spore germination of plant-pathogenic fungi. The results of the present study indicate that ClCI had biotechnological potential as an alternative agent to combat the important phytopathogenic fungi.
Collapse
Affiliation(s)
- Jing-Jun Ruan
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Wen-Feng Weng
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jun Yan
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yue-Xia Zhou
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Ming-Jian Ren
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jian-Ping Cheng
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
6
|
Mc Callum G, Arregui M, Smith I, Bracco L, Wolman F, Cascone O, Targovnik A, Miranda M. Recombinant protein purification in baculovirus-infected Rachiplusia nu larvae: An approach towards a rational design of downstream processing strategies based on chromatographic behavior of proteins. Protein Expr Purif 2019; 158:44-50. [DOI: 10.1016/j.pep.2019.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/11/2022]
|
7
|
Das A, Basak P, Pramanick A, Majumder R, Pal D, Ghosh A, Guria M, Bhattacharyya M, Banik SP. Trehalose mediated stabilisation of cellobiase aggregates from the filamentous fungus Penicillium chrysogenum. Int J Biol Macromol 2019; 127:365-375. [PMID: 30658143 DOI: 10.1016/j.ijbiomac.2019.01.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022]
Abstract
Extracellular fungal cellobiases develop large stable aggregates by reversible concentration driven interaction. In-vitro addition of trehalose resulted in bigger cellobiase assemblies with increased stability against heat and dilution induced dissociation. In presence of 0.1 M trehalose, the size of aggregates increased from 344 nm to 494 nm. The increase in size was also observed in zymography of cellobiase. Activation energy of the trehalose stabilised enzyme (Ea = 220.9 kJ/mol) as compared to control (Ea = 257.734 kJ/mol), suggested enhanced thermostability and also showed increased resistance to chaotropes. Purified cellobiase was found to contain 196.27 μg of sugar/μg of protein. It was proposed that presence of glycan on protein's surface impedes and delays trehalose docking. Consequently, self-association of cellobiase preceded coating by trehalose leading to stabilisation of bigger cellobiase aggregates. In unison with the hypothesis, ribosylated BSA failed to get compacted by trehalose and developed into bigger aggregates with average size increasing from 210 nm to 328 nm. Wheat Germ Lectin, in presence of trehalose, showed higher molecular weight assemblies in DLS, native-PAGE and fluorescence anisotropy. This is the first report of cross-linking independent stabilisation of purified fungal glycosidases providing important insights towards understanding the aggregation and stability of glycated proteins.
Collapse
Affiliation(s)
- Ahana Das
- Department of Microbiology, Maulana Azad College, 8 Rafi Ahmed Kidwai Road, Kolkata 700013, West Bengal, India
| | - Pijush Basak
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Sector C, East Kolkata Township, Kolkata 700107, West Bengal, India
| | - Arnab Pramanick
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Sector C, East Kolkata Township, Kolkata 700107, West Bengal, India
| | - Rajib Majumder
- School of Life Science and Biotechnology, Department of Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Debadrita Pal
- Department of Biology, New Mexico State University, PO Box 30001, MSC 3AF, Las Cruces, NM 88003, United States of America
| | - Avishek Ghosh
- Department of Microbiology, Maulana Azad College, 8 Rafi Ahmed Kidwai Road, Kolkata 700013, West Bengal, India
| | - Manas Guria
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Maitree Bhattacharyya
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Sector C, East Kolkata Township, Kolkata 700107, West Bengal, India.
| | - Samudra Prosad Banik
- Department of Microbiology, Maulana Azad College, 8 Rafi Ahmed Kidwai Road, Kolkata 700013, West Bengal, India.
| |
Collapse
|
8
|
Li L, Tian X, Chen J, Li P, Zheng Q, Hou J. Griffithsin inhibits porcine reproductive and respiratory syndrome virus infection in vitro. Arch Virol 2018; 163:3317-3325. [PMID: 30220033 PMCID: PMC7087274 DOI: 10.1007/s00705-018-4029-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/01/2018] [Indexed: 11/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen that severely disrupts swine production. Despite sustained efforts, the disease is still endemic, with high mortality and morbidity. New antiviral strategies to control PRRSV are needed. Griffithsin, a red algal lectin, has potent antiviral effect on several human enveloped viruses, but this effect has not been demonstrated on PRRSV. Here, we first tested the in vitro antiviral activity of Griffithsin against PRRSV. Griffithsin exerted strong saccharide-dependent antiviral activity against PRRSV, probably through interactions with glycans on the surface of PRRSV that interfered with virus entry. Furthermore we revealed that Griffithsin's action on PRRSV involved blocking viral adsorption, and it had no effect on viral penetration. Besides Our findings also suggested that Griffithsin may interfere with cell-to-cell spread to prevent virus transmission. The remarkable potency profile of Griffithsin supports its potential value as an antiviral agent against PRRSV.
Collapse
Affiliation(s)
- Lan Li
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu People’s Republic of China
| | - Xiaoning Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Jin Chen
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu People’s Republic of China
| | - Pengcheng Li
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu People’s Republic of China
| | - Qisheng Zheng
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu People’s Republic of China
| | - Jibo Hou
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu People’s Republic of China
| |
Collapse
|
9
|
Leyva E, Medrano-Cerano JL, Cano-Sánchez P, López-González I, Gómez-Velasco H, del Río-Portilla F, García-Hernández E. Bacterial expression, purification and biophysical characterization of wheat germ agglutinin and its four hevein-like domains. Biopolymers 2018; 110:e23242. [DOI: 10.1002/bip.23242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Eduardo Leyva
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Jorge L. Medrano-Cerano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Itzel López-González
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Homero Gómez-Velasco
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Federico del Río-Portilla
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| |
Collapse
|
10
|
Li L, Qiao X, Chen J, Zhang Y, Zheng Q, Hou J. Surface-displayed porcine reproductive and respiratory syndrome virus from cell culture onto gram-positive enhancer matrix particles. J Ind Microbiol Biotechnol 2018; 45:889-898. [PMID: 30046953 PMCID: PMC7088258 DOI: 10.1007/s10295-018-2061-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Vaccine immunization is now one of the most effective ways to control porcine reproductive and respiratory syndrome virus (PRRSV) infection. Impurity is one of the main factors affecting vaccine safety and efficacy. Here we present a novel innovative PRRSV purification approach based on surface display technology. First, a bifunctional protein PA-GRFT (protein anchor-griffithsin), the crucial factor in the purification process, was successfully produced in Escherichia coli yielding 80 mg/L of broth culture. Then PRRSV purification was performed by incubation of PA-GRFT with PRRSV and gram-positive enhancer matrix (GEM) particles, followed by centrifugation to collect virions loaded onto GEM particles. Our results showed that most of the bulk impurities had been removed, and PA-GRFT could capture PRRSV onto GEM particles. Our lactic acid bacteria-based purification method, which is promising as ease of operation, low cost and easy to scale-up, may represent a candidate method for the large-scale purification of this virus for vaccine production.
Collapse
Affiliation(s)
- Lan Li
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xuwen Qiao
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Jin Chen
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Yuanpeng Zhang
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Qisheng Zheng
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | - Jibo Hou
- National Research, Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
11
|
Hirsch DB, Baieli MF, Urtasun N, Lázaro- Martínez JM, Glisoni RJ, Miranda MV, Cascone O, Wolman FJ. Sulfanilic acid-modified chitosan mini-spheres and their application for lysozyme purification from egg white. Biotechnol Prog 2017; 34:387-396. [DOI: 10.1002/btpr.2588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/10/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Daniela B. Hirsch
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Junín 956, 1113 Buenos Aires; Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, 1113 Buenos Aires; Argentina
| | - María F. Baieli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Junín 956, 1113 Buenos Aires; Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, 1113 Buenos Aires; Argentina
| | - Nicolás Urtasun
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Junín 956, 1113 Buenos Aires; Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, 1113 Buenos Aires; Argentina
| | - Juan M. Lázaro- Martínez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 956 (C1113AAD); Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956 (C1113AAD); Buenos Aires Argentina
| | - Romina J. Glisoni
- CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, 1113 Buenos Aires; Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica II. Junín 956, 1113 Buenos Aires; Argentina
| | - María V. Miranda
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Junín 956, 1113 Buenos Aires; Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, 1113 Buenos Aires; Argentina
| | - Osvaldo Cascone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Junín 956, 1113 Buenos Aires; Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, 1113 Buenos Aires; Argentina
| | - Federico J. Wolman
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Junín 956, 1113 Buenos Aires; Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, 1113 Buenos Aires; Argentina
| |
Collapse
|
12
|
Smith ME, Targovnik AM, Cerezo J, Morales MA, Miranda MV, Talou JR. Integrated process for the purification and immobilization of the envelope protein domain III of dengue virus type 2 expressed in Rachiplusia nu larvae and its potential application in a diagnostic assay. Protein Expr Purif 2016; 131:76-84. [PMID: 27888023 DOI: 10.1016/j.pep.2016.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 12/24/2022]
Abstract
Dengue incidence has grown dramatically in the last years, with about 40% of the world population at risk of infection. Recently, a vaccine developed by Sanofi Pasteur has been registered, but only in a few countries. Moreover, specific antiviral drugs are not available. Thus, an efficient and accurate diagnosis is important for disease management. To develop a low-cost immunoassay for dengue diagnosis, in the present study we expressed the envelope protein domain III of dengue virus type 2 in Rachiplusia nu larvae by infection with a recombinant baculovirus. The antigen was expressed as a fusion to hydrophobin I (DomIIIHFBI) to easily purify it by an aqueous two-phase system (ATPS) and to efficiently immobilize it in immunoassay plates. A high level of recombinant DomIIIHFBI was obtained in R. nu, where yields reached 4.5 mg per g of larva. Also, we were able to purify DomIIIHFBI by an ATPS with 2% of Triton X-114, reaching a yield of 73% and purity higher than 80% in a single purification step. The recombinant DomIIIHFBI was efficiently immobilized in hydrophobic surface plates. The immunoassay we developed with the immobilized antigen was able to detect IgG specific for dengue virus type 2 in serum samples and not for other serotypes.
Collapse
Affiliation(s)
- María Emilia Smith
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Alexandra Marisa Targovnik
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Julieta Cerezo
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - María Alejandra Morales
- Laboratorio de Arbovirus, Instituto Nacional de Enfermedades Virales Humanas (INEVH) "Dr. Julio I. Maiztegui"- ANLIS, Monteagudo 2510, 2700, Pergamino, Buenos Aires, Argentina.
| | - María Victoria Miranda
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Julián Rodríguez Talou
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
13
|
Singh RS, Kaur HP, Singh J. Purification and characterization of a mycelial mucin specific lectin from Aspergillus panamensis with potent mitogenic and antibacterial activity. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|