1
|
Yan X, He Q, Geng B, Yang S. Microbial Cell Factories in the Bioeconomy Era: From Discovery to Creation. BIODESIGN RESEARCH 2024; 6:0052. [PMID: 39434802 PMCID: PMC11491672 DOI: 10.34133/bdr.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Microbial cell factories (MCFs) are extensively used to produce a wide array of bioproducts, such as bioenergy, biochemical, food, nutrients, and pharmaceuticals, and have been regarded as the "chips" of biomanufacturing that will fuel the emerging bioeconomy era. Biotechnology advances have led to the screening, investigation, and engineering of an increasing number of microorganisms as diverse MCFs, which are the workhorses of biomanufacturing and help develop the bioeconomy. This review briefly summarizes the progress and strategies in the development of robust and efficient MCFs for sustainable and economic biomanufacturing. First, a comprehensive understanding of microbial chassis cells, including accurate genome sequences and corresponding annotations; metabolic and regulatory networks governing substances, energy, physiology, and information; and their similarity and uniqueness compared with those of other microorganisms, is needed. Moreover, the development and application of effective and efficient tools is crucial for engineering both model and nonmodel microbial chassis cells into efficient MCFs, including the identification and characterization of biological parts, as well as the design, synthesis, assembly, editing, and regulation of genes, circuits, and pathways. This review also highlights the necessity of integrating automation and artificial intelligence (AI) with biotechnology to facilitate the development of future customized artificial synthetic MCFs to expedite the industrialization process of biomanufacturing and the bioeconomy.
Collapse
Affiliation(s)
| | | | - Binan Geng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences,
Hubei University, Wuhan 430062, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences,
Hubei University, Wuhan 430062, China
| |
Collapse
|
2
|
Li D, Shen J, Ding Q, Wu J, Chen X. Recent progress of atmospheric and room-temperature plasma as a new and promising mutagenesis technology. Cell Biochem Funct 2024; 42:e3991. [PMID: 38532652 DOI: 10.1002/cbf.3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
At present, atmospheric and room-temperature plasma (ARTP) is regarded as a new and powerful mutagenesis technology with the advantages of environment-friendliness, operation under mild conditions, and fast mutagenesis speed. Compared with traditional mutagenesis strategies, ARTP is used mainly to change the structure of microbial DNA, enzymes, and proteins through a series of physical, chemical, and electromagnetic effects with the organisms, leading to nucleotide breakage, conversion or inversion, causing various DNA damages, so as to screen out the microbial mutants with better biological characteristics. As a result, in recent years, ARTP mutagenesis and the combination of ARTP with traditional mutagenesis have been widely used in microbiology, showing great potential for application. In this review, the recent progress of ARTP mutagenesis in different application fields and bottlenecks of this technology are systematically summarized, with a view to providing a theoretical basis and technical support for better application. Finally, the outlook of ARTP mutagenesis is presented, and we identify the challenges in the field of microbial mutagenesis by ARTP.
Collapse
Affiliation(s)
- Dongao Li
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jie Shen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Qiang Ding
- Yichang Sanxia Pharmaceutical Co., Ltd., Yichang City, Hubei Province, China
| | - Jinyong Wu
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Xiangsong Chen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| |
Collapse
|
3
|
Zhou S, Ding N, Han R, Deng Y. Metabolic engineering and fermentation optimization strategies for producing organic acids of the tricarboxylic acid cycle by microbial cell factories. BIORESOURCE TECHNOLOGY 2023; 379:128986. [PMID: 37001700 DOI: 10.1016/j.biortech.2023.128986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The organic acids of the tricarboxylic acid (TCA) pathway are important platform compounds and are widely used in many areas. The high-productivity strains and high-efficient and low-cost fermentation are required to satisfy a huge market size. The high metabolic flux of the TCA pathway endows microorganisms potential to produce high titers of these organic acids. Coupled with metabolic engineering and fermentation optimization, the titer of the organic acids has been significantly improved in recent years. Herein, we discuss and compare the recent advances in synthetic pathway engineering, cofactor engineering, transporter engineering, and fermentation optimization strategies to maximize the biosynthesis of organic acids. Such engineering strategies were mainly based on the TCA pathway and glyoxylate pathway. Furthermore, organic-acid-secretion enhancement and renewable-substrate-based fermentation are often performed to assist the biosynthesis of organic acids. Further strategies are also discussed to construct high-productivity and acid-resistant strains for industrial large-scale production.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Nana Ding
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Gord Noshahri N, Sharifi A, Seyedabadi M, Rudat J, Zare Mehrjerdi M. Development of two devices for high-throughput screening of ethanol-producing microorganisms by real-time CO 2 production monitoring. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02892-3. [PMID: 37338580 DOI: 10.1007/s00449-023-02892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Bioethanol's importance as a renewable energy carrier led to the development of new devices for the high-throughput screening (HTS) of ethanol-producing microorganisms, monitoring ethanol production, and process optimization. This study developed two devices based on measuring CO2 evolution (an equimolar byproduct of microbial ethanol fermentation) to allow for a fast and robust HTS of ethanol-producing microorganisms for industrial purposes. First, a pH-based system for identifying ethanol producers (Ethanol-HTS) was established in a 96-well plate format where CO2 emission is captured by a 3D-printed silicone lid and transferred from the fermentation well to a reagent containing bromothymol blue as a pH indicator. Second, a self-made CO2 flow meter (CFM) was developed as a lab-scale tool for real-time quantification of ethanol production. This CFM contains four chambers to simultaneously apply different fermentation treatments while LCD and serial ports allow fast and easy data transfer. Applying ethanol-HTS with various yeast concentrations and yeast strains displayed different colors, from dark blue to dark and light green, based on the amount of carbonic acid formed. The results of the CFM device revealed a fermentation profile. The curve of CO2 production flow among six replications showed the same pattern in all batches. The comparison of final ethanol concentrations calculated based on CO2 flow by the CFM device with the GC analysis showed 3% difference which is not significant. Data validation of both devices demonstrated their applicability for screening novel bioethanol-producer strains, determining carbohydrate fermentation profiles, and monitoring ethanol production in real time.
Collapse
Affiliation(s)
- Najme Gord Noshahri
- Industrial Microbial Biotechnology Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Ahmad Sharifi
- Horticultural Plants Biotechnology Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Mohsen Seyedabadi
- Industrial Microbial Biotechnology Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Jens Rudat
- BLT 2: Technical Biology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | | |
Collapse
|
5
|
Enhancement of α-Ketoglutaric Acid Production by Yarrowia lipolytica Grown on Mixed Renewable Carbon Sources through Adjustment of Culture Conditions. Catalysts 2022. [DOI: 10.3390/catal13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
α-Ketoglutaric acid (KGA) is a valuable compound with a wide range of applications, e.g., in the cosmetics, pharmaceutical, chemical and food industries. The present study aimed to enhance the efficiency of KGA production by Yarrowia lipolytica CBS146773 from renewable carbon sources. In the investigation, various factors that may potentially affect KGA biosynthesis were examined in bioreactor cultures performed on a simple medium containing glycerol (20 g/L) and fed with four portions of a substrate mixture (15 + 15 g/L of glycerol and rapeseed oil). It was found that the process may be stimulated by regulation of the medium pH and aeration, application of selected neutralizing agents, supplementation with thiamine and addition of sorbitan monolaurate, whereas presence of biotin and iron ions had no positive effect on KGA biosynthesis. Adjustment of the parameters improved the process efficiency and allowed 82.4 g/L of KGA to be obtained, corresponding to productivity of 0.57 g/L h and yield of 0.59 g/g. In addition, the production of KGA was characterized by a low level (≤6.3 g/L) of by-products, i.e., citric and pyruvic acids. The results confirmed the high potential of renewable carbon sources (glycerol + rapeseed oil) for effective KGA biosynthesis by Yarrowia lipolytica.
Collapse
|
6
|
Selection of Producer of α-Ketoglutaric Acid from Ethanol-Containing Wastes and Impact of Cultivation Conditions. FERMENTATION 2022. [DOI: 10.3390/fermentation8080362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ester–aldehyde fraction (EAF) is a by-product of ethyl-alcohol-producing companies whose purification requires an expensive process. The results of this study illustrate the environmentally friendly and alternative possibility of using EAF to increase their value as substrate to produce α-ketoglutaric acid (KGA) using different yeasts. It was found that some species of the genera Babjeviella, Diutina, Moesziomyces, Pichia, Saturnispora, Sugiyamaella, Yarrowia and Zygoascus grown under thiamine deficiency accumulate KGA in the medium with an EAF as the sole carbon source. The strain Y. lipolytica VKM Y-2412 was selected as the producer. To reach the maximum production of KGA, the cultivation medium should contain 0.3 µg/L thiamine during cultivation in flasks and 2 µg/L in the fermentor; the concentration of (NH4)2SO4 should range from 3 to 6 g/L; and the optimal concentrations of Zn2+, Fe2+ and Cu2+ ions should be 1.2, 0.6 and 0.05 mg/L, respectively. EAF concentration should not exceed 1.5 g/L in the growth phase and 3 g/L in the KGA synthesis phase. At higher EAF concentrations, acetic acid was accumulated and inhibited yeast growth and KGA production. Under optimal conditions, the producer accumulated 53.8 g/L KGA with a yield (Yp/s) of 0.68 g/g substrate consumed.
Collapse
|
7
|
Veerana M, Yu N, Ketya W, Park G. Application of Non-Thermal Plasma to Fungal Resources. J Fungi (Basel) 2022; 8:jof8020102. [PMID: 35205857 PMCID: PMC8879654 DOI: 10.3390/jof8020102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
In addition to being key pathogens in plants, animals, and humans, fungi are also valuable resources in agriculture, food, medicine, industry, and the environment. The elimination of pathogenic fungi and the functional enhancement of beneficial fungi have been the major topics investigated by researchers. Non-thermal plasma (NTP) is a potential tool to inactivate pathogenic and food-spoiling fungi and functionally enhance beneficial fungi. In this review, we summarize and discuss research performed over the last decade on the use of NTP to treat both harmful and beneficial yeast- and filamentous-type fungi. NTP can efficiently inactivate fungal spores and eliminate fungal contaminants from seeds, fresh agricultural produce, food, and human skin. Studies have also demonstrated that NTP can improve the production of valuable enzymes and metabolites in fungi. Further studies are still needed to establish NTP as a method that can be used as an alternative to the conventional methods of fungal inactivation and activation.
Collapse
Affiliation(s)
- Mayura Veerana
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Nannan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
- Correspondence: ; Tel.: +82-2-940-8324
| |
Collapse
|
8
|
Li YC, Rao JW, Meng FB, Wang ZW, Liu DY, Yu H. Combination of mutagenesis and adaptive evolution to engineer salt-tolerant and aroma-producing yeast for soy sauce fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4288-4297. [PMID: 33417246 DOI: 10.1002/jsfa.11068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The moromi fermentation of high-salt liquid-state fermentation (HLF) soy sauce is usually performed in high-brine solution (17-20%, w/w), which decreases the metabolic activity of aroma-producing yeast. To enhance the soy sauce flavors, increasing the salt tolerance of aroma-producing yeasts is very important for HLF soy sauce fermentation. RESULTS In the present study, atmospheric and room-temperature plasma (ARTP) was first used to mutate the aroma-producing yeast Wickerhamomyces anomalus, and the salt tolerant strains were obtained by selection of synthetic medium with a sodium chloride concentration of 18% (w/w). Furthermore, adaptive laboratory evolution (ALE) was used to improve the salt tolerance of the mutant strains. The results obtained indicated that the combination use of ARTP and ALE markedly increased the NaCl tolerance of the yeast by increasing the cellular accumulation of K+ and removal of cytosolic Na+ , in addition to promoting the production of glycerin and strengthening the integrity of the cell membrane and cell wall. In soy sauce fermentation, the engineered strains improved the physicochemical parameters of HLF soy sauce compared to those produced by the wild-type strain, and the engineered strains also increased the alcohol, acid and aldehyde production, and enriched the types of esters in the soy sauce. CONCLUSION The results of the present study indicated that the combination of ARTP mutagenesis and ALE significantly improved the salt tolerance of the aroma-producing yeast, and also enhanced the production of volatiles of HLF soy sauce. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun-Cheng Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jia-Wei Rao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Fan-Bing Meng
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zhong-Wei Wang
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Da-Yu Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua Yu
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
9
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform. J Ind Microbiol Biotechnol 2020; 47:845-862. [PMID: 32623653 DOI: 10.1007/s10295-020-02290-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/25/2020] [Indexed: 01/24/2023]
Abstract
Yarrowia lipolytica is an oleaginous yeast that has been substantially engineered for production of oleochemicals and drop-in transportation fuels. The unique acetyl-CoA/malonyl-CoA supply mode along with the versatile carbon-utilization pathways makes this yeast a superior host to upgrade low-value carbons into high-value secondary metabolites and fatty acid-based chemicals. The expanded synthetic biology toolkits enabled us to explore a large portfolio of specialized metabolism beyond fatty acids and lipid-based chemicals. In this review, we will summarize the recent advances in genetic, omics, and computational tool development that enables us to streamline the genetic or genomic modification for Y. lipolytica. We will also summarize various metabolic engineering strategies to harness the endogenous acetyl-CoA/malonyl-CoA/HMG-CoA pathway for production of complex oleochemicals, polyols, terpenes, polyketides, and commodity chemicals. We envision that Y. lipolytica will be an excellent microbial chassis to expand nature's biosynthetic capacity to produce plant secondary metabolites, industrially relevant oleochemicals, agrochemicals, commodity, and specialty chemicals and empower us to build a sustainable biorefinery platform that contributes to the prosperity of a bio-based economy in the future.
Collapse
|
12
|
Wang H, Zhang J, Dou F, Chen Z. A near-infrared fluorescent probe quinaldine red lights up the β-sheet structure of amyloid proteins in mouse brain. Biosens Bioelectron 2020; 153:112048. [PMID: 32056662 DOI: 10.1016/j.bios.2020.112048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 01/15/2023]
Abstract
In this report, we describe a near-infrared fluorescent probe called quinaldine red (QR) which lights up the β-sheet structure of amyloid fibrils. The photochemical and biophysical properties of QR along with other canonical amyloid probes in the presence of protein fibrils were investigated by using fluorescence spectroscopy, confocal fluorescent microscopy and isothermal titration calorimetry. Moreover, the binding sites and interaction mode between QR and insulin fibrils were calculated based on molecule docking. Among these amyloid probes, QR showed several advantages including strong supramolecular force, near-infrared emission, high sensitivity and resistance to bleaching. A linear response of the fluorescence intensity of QR towards fibril samples in the presence of sera was visualized in the range of 1-30 μM, with the limit of detection (LOD) of 2.31 μM. The recovery and relative standard deviation (RSD) of the proposed method for the determination of protein fibrils was 90.4%-99.2% and 3.05%-3.47%, respectively. Finally, QR can be fluorescently lighted up when meeting the aberrant protein aggregates of pathogenic mice. We recommend QR as a novel and excellent alternative tool for monitoring conformational transition of amyloid proteins.
Collapse
Affiliation(s)
- Haojie Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, PR China
| | - Jianxiang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and Beijing Key Laboratory of Genetic Engineering Drugs & Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, PR China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and Beijing Key Laboratory of Genetic Engineering Drugs & Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, PR China.
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, PR China.
| |
Collapse
|
13
|
Zeng W, Guo L, Xu S, Chen J, Zhou J. High-Throughput Screening Technology in Industrial Biotechnology. Trends Biotechnol 2020; 38:888-906. [PMID: 32005372 DOI: 10.1016/j.tibtech.2020.01.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Abstract
Based on the development of automatic devices and rapid assay methods, various high-throughput screening (HTS) strategies have been established for improving the performance of industrial microorganisms. We discuss the most significant factors that can improve HTS efficiency, including the construction of screening libraries with high diversity and the use of new detection methods to expand the search range and highlight target compounds. We also summarize applications of HTS for enhancing the performance of industrial microorganisms. Current challenges and potential improvements to HTS in industrial biotechnology are discussed in the context of rapid developments in synthetic biology, nanotechnology, and artificial intelligence. Rational integration will be an important driving force for constructing more efficient industrial microorganisms with wider applications in biotechnology.
Collapse
Affiliation(s)
- Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Likun Guo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
14
|
Novel mutagenesis and screening technologies for food microorganisms: advances and prospects. Appl Microbiol Biotechnol 2020; 104:1517-1531. [DOI: 10.1007/s00253-019-10341-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 12/28/2019] [Indexed: 12/19/2022]
|
15
|
Chen Y, Liu L, Shan X, Du G, Zhou J, Chen J. High-Throughput Screening of a 2-Keto-L-Gulonic Acid-Producing Gluconobacter oxydans Strain Based on Related Dehydrogenases. Front Bioeng Biotechnol 2019; 7:385. [PMID: 31921801 PMCID: PMC6923176 DOI: 10.3389/fbioe.2019.00385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/18/2019] [Indexed: 01/31/2023] Open
Abstract
High-throughput screening is a powerful tool for discovering strains in the natural environment that may be suitable for target production. Herein, a novel enzyme-based high-throughput screening method was developed for rapid screening of strains overproducing 2-keto-L-gulonic acid (2-KLG). The screening method detects changes in the fluorescence of reduced nicotinamide adenine dinucleotide (NADH) at 340 nm using a microplate reader when 2-KLG is degraded by 2-KLG reductase. In this research, three different 2-KLG reductases were expressed, purified, and studied. The 2-KLG reductase from Aspergillus niger were selected as the best appropriate reductase to establishment the method for its high activity below pH 7. Using the established method, and coupled with fluorescence-activated cell sorting, we achieved a high 2-KLG-producing strain of Gluconobacter oxydans WSH-004 from soil. When cultured with D-sorbitol as the substrate, the 2-KLG yield was 2.5 g/L from 50 g/L D-sorbitol without any side products. Compared with other reported screening methods, our enzyme-based method is more efficient and accurate for obtaining high-producing 2-KLG strains, and it is also convenient and cost-effective. The method is broadly applicable for screening keto acids and other products that can be oxidized via nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine dinucleotide phosphate (NADP+).
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Li Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Elevated H2AX Phosphorylation Observed with kINPen Plasma Treatment Is Not Caused by ROS-Mediated DNA Damage but Is the Consequence of Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8535163. [PMID: 31641425 PMCID: PMC6770374 DOI: 10.1155/2019/8535163] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022]
Abstract
Phosphorylated histone 2AX (γH2AX) is a long-standing marker for DNA double-strand breaks (DSBs) from ionizing radiation in the field of radiobiology. This led to the perception of γH2AX being a general marker of direct DNA damage with the treatment of other agents such as low-dose exogenous ROS that unlikely act on cellular DNA directly. Cold physical plasma confers biomedical effects majorly via release of reactive oxygen and nitrogen species (ROS). In vitro, increase of γH2AX has often been observed with plasma treatment, leading to the conclusion that DNA damage is a direct consequence of plasma exposure. However, increase in γH2AX also occurs during apoptosis, which is often observed with plasma treatment as well. Moreover, it must be questioned if plasma-derived ROS can reach into the nucleus and still be reactive enough to damage DNA directly. We investigated γH2AX induction in a lymphocyte cell line upon ROS exposure (plasma, hydrogen peroxide, or hypochlorous acid) or UV-B light. Cytotoxicity and γH2AX induction was abrogated by the use of antioxidants with all types of ROS treatment but not UV radiation. H2AX phosphorylation levels were overall independent of analyzing either all nucleated cells or segmenting γH2AX phosphorylation for each cell cycle phase. SB202190 (p38-MAPK inhibitor) and Z-VAD-FMK (pan-caspase inhibitor) significantly inhibited γH2AX induction upon ROS but not UV treatment. Finally, and despite γH2AX induction, UV but not plasma treatment led to significantly increased micronucleus formation, which is a functional read-out of genotoxic DNA DSBs. We conclude that plasma-mediated and low-ROS γH2AX induction depends on caspase activation and hence is not the cause but consequence of apoptosis induction. Moreover, we could not identify lasting mutagenic effects with plasma treatment despite phosphorylation of H2AX.
Collapse
|
17
|
Feng J, Li T, Zhang X, Chen J, Zhao T, Zou X. Efficient production of polymalic acid from xylose mother liquor, an environmental waste from the xylitol industry, by a T-DNA-based mutant of Aureobasidium pullulans. Appl Microbiol Biotechnol 2019; 103:6519-6527. [DOI: 10.1007/s00253-019-09974-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
|
18
|
Zhou S, Lyu Y, Li H, Koffas MA, Zhou J. Fine‐tuning the (2
S
)‐naringenin synthetic pathway using an iterative high‐throughput balancing strategy. Biotechnol Bioeng 2019; 116:1392-1404. [DOI: 10.1002/bit.26941] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shenghu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University Wuxi Jiangsu China
| | - Yunbin Lyu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University Wuxi Jiangsu China
| | - Huazhong Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
| | - Mattheos A.G. Koffas
- Department of Chemical and Biological EngineeringRensselaer Polytechnic Institute Troy New York
- Department of Biological SciencesRensselaer Polytechnic Institute Troy New York
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University Wuxi Jiangsu China
| |
Collapse
|
19
|
Abdel-Mawgoud AM, Markham KA, Palmer CM, Liu N, Stephanopoulos G, Alper HS. Metabolic engineering in the host Yarrowia lipolytica. Metab Eng 2018; 50:192-208. [PMID: 30056205 DOI: 10.1016/j.ymben.2018.07.016] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
The nonconventional, oleaginous yeast, Yarrowia lipolytica is rapidly emerging as a valuable host for the production of a variety of both lipid and nonlipid chemical products. While the unique genetics of this organism pose some challenges, many new metabolic engineering tools have emerged to facilitate improved genetic manipulation in this host. This review establishes a case for Y. lipolytica as a premier metabolic engineering host based on innate metabolic capacity, emerging synthetic tools, and engineering examples. The metabolism underlying the lipid accumulation phenotype of this yeast as well as high flux through acyl-CoA precursors and the TCA cycle provide a favorable metabolic environment for expression of relevant heterologous pathways. These properties allow Y. lipolytica to be successfully engineered for the production of both native and nonnative lipid, organic acid, sugar and acetyl-CoA derived products. Finally, this host has unique metabolic pathways enabling growth on a wide range of carbon sources, including waste products. The expansion of carbon sources, together with the improvement of tools as highlighted here, have allowed this nonconventional organism to act as a cellular factory for valuable chemicals and fuels.
Collapse
Affiliation(s)
- Ahmad M Abdel-Mawgoud
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Kelly A Markham
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States
| | - Claire M Palmer
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States
| | - Nian Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States.
| |
Collapse
|
20
|
Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): the latest development. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0200-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Híreš M, Rapavá N, Šimkovič M, Varečka Ľ, Berkeš D, Kryštofová S. Development and Optimization of a High-Throughput Screening Assay for Rapid Evaluation of Lipstatin Production by Streptomyces Strains. Curr Microbiol 2017; 75:580-587. [PMID: 29256008 DOI: 10.1007/s00284-017-1420-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/11/2017] [Indexed: 11/24/2022]
Abstract
Pancreatic lipase inhibitors, such as tetrahydrolipstatin (orlistat), are used in anti-obesity treatments. Orlistat is the only anti-obesity drug approved by the European Medicines Agency (EMA). The drug is synthesized by saturation of lipstatin, a β-lactone compound, isolated from Streptomyces toxytricini and S. virginiae. To identify producers of novel pancreatic lipase inhibitors or microbial strains with improved lipstatin production and higher chemical purity remains still a priority. In this study, a high-throughput screening method to identify Streptomyces strains producing potent pancreatic lipase inhibitors was established. The assay was optimized and validated using S. toxytricini NRRL 15443 and its mutants. Strains grew in 24-well titer plates. Lipstatin levels were assessed directly in culture medium at the end of cultivation by monitoring lipolytic activity in the presence of a chromogenic substrate, 1,2-Di-O-lauryl-rac-glycero-3-glutaric acid 6-methylresorufin ester (DGGR). The lipase activity decreased in response to lipstatin production, and this was demonstrated by accumulation of red-purple methylresorufin, a product of DGGR digestion. The sensitivity of the assay was achieved by adding a lipase of high lipolytic activity and sensitivity to lipstatin to the reaction mixture. In the assay, the fungal lipase from Mucor javanicus was used as an alternative to the human pancreatic lipase. Many fungal lipases preserve high lipolytic activity in extreme conditions and are not colipase dependent. The assay proved to be reliable in differentiation of strains with high and low lipstatin productivity.
Collapse
Affiliation(s)
- Michal Híreš
- Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 81 237, Bratislava, Slovakia.
| | - Nora Rapavá
- Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 81 237, Bratislava, Slovakia
| | - Martin Šimkovič
- Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 81 237, Bratislava, Slovakia
| | - Ľudovít Varečka
- Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 81 237, Bratislava, Slovakia
| | - Dušan Berkeš
- Department of Organic Chemistry, Slovak University of Technology, Radlinského 9, 81 237, Bratislava, Slovakia
| | - Svetlana Kryštofová
- Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 81 237, Bratislava, Slovakia
| |
Collapse
|
22
|
Enhanced avermectin production by Streptomyces avermitilis ATCC 31267 using high-throughput screening aided by fluorescence-activated cell sorting. Appl Microbiol Biotechnol 2017; 102:703-712. [DOI: 10.1007/s00253-017-8658-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
23
|
Luo Z, Liu S, Du G, Xu S, Zhou J, Chen J. Enhanced pyruvate production in Candida glabrata
by carrier engineering. Biotechnol Bioeng 2017; 115:473-482. [DOI: 10.1002/bit.26477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Zhengshan Luo
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Song Liu
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education; Jiangnan University; Wuxi Jiangsu China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education; Jiangnan University; Wuxi Jiangsu China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi Jiangsu China
| |
Collapse
|
24
|
Zeng W, Zhang H, Xu S, Fang F, Zhou J. Biosynthesis of keto acids by fed-batch culture of Yarrowia lipolytica WSH-Z06. BIORESOURCE TECHNOLOGY 2017; 243:1037-1043. [PMID: 28764105 DOI: 10.1016/j.biortech.2017.07.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Both α-ketoglutarate (α-KG) and pyruvate (PYR) are important organic acids with promising applications in the food, pharmaceutical and chemical industries. During the production of α-KG by different microorganisms, PYR is always present as a by-product. Strategies have been applied to eliminate PYR accumulation since it can bring difficulties to the downstream separation process. However, modern separation technologies have already conquered this problem. Therefore, this study was aimed at simultaneously enhancing α-KG and PYR production by Yarrowia lipolytica WSH-Z06. Using a fed-batch strategy, in which the initial glycerol concentration was 50g·L-1, the residual glycerol concentration was maintained 20-30g·L-1 by constant feeding at a rate of 1.25g·L-1·h-1. The titers of α-KG and PYR were increased by 9.6% and 176.8%, and reached 67.4g·L-1 and 39.1g·L-1, respectively. The final yield of keto acids was 0.71g·g-1 glycerol, which is 42.0% higher than that of the optimal batch fermentation.
Collapse
Affiliation(s)
- Weizhu Zeng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Hailin Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Fang Fang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
25
|
Szczygiełda M, Prochaska K. Alpha-ketoglutaric acid production using electrodialysis with bipolar membrane. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications. Biotechnol Adv 2017; 35:950-970. [PMID: 28723577 DOI: 10.1016/j.biotechadv.2017.07.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/07/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Abstract
Within the Design-Build-Test Cycle for strain engineering, rapid product detection and selection strategies remain challenging and limit overall throughput. Here we summarize a wide variety of modalities that transduce chemical concentrations into easily measured absorbance, luminescence, and fluorescence signals. Specifically, we cover protein-based biosensors (including transcription factors), nucleic acid-based biosensors, coupled enzyme reactions, bioorthogonal chemistry, and fluorescent and chromogenic dyes and substrates as modalities for detection. We focus on the use of these methods for strain engineering and enzyme discovery and conclude with remarks on the current and future state of biosensor development for application in the metabolic engineering field.
Collapse
|
27
|
An J, Gao F, Ma Q, Xiang Y, Ren D, Lu J. Screening for enhanced astaxanthin accumulation among Spirulina platensis mutants generated by atmospheric and room temperature plasmas. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Liu YJ, Chen XS, Zhao JJ, Pan L, Mao ZG. Development of Microtiter Plate Culture Method for Rapid Screening of ε-Poly-L-Lysine-Producing Strains. Appl Biochem Biotechnol 2017; 183:1209-1223. [PMID: 28540517 DOI: 10.1007/s12010-017-2493-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/24/2017] [Indexed: 11/28/2022]
Abstract
ε-Poly-L-lysine (ε-PL) produced by Streptomyces albulus possesses a broad spectrum of antimicrobial activity and is widely used as a food preservative. To extensively screen ε-PL-overproducing strain, we developed an integrated high-throughput screening assay using ribosome engineering technology. The production protocol was scaled down to 24- and 48-deep-well microtiter plates (MTPs). The microplate reader assay was used to monitor ε-PL production. A good correlation was observed between the fermentation results obtained in both 24-(48)-deep-well MTPs and conventional Erlenmeyer flasks. Using this protocol, the production of ε-PL in an entire MTP was determined in <5 min without compromising on accuracy. The high-yielding strain selected through this protocol was also tested in Erlenmeyer flasks. The result showed that the ε-PL production of the high-yielding mutants was nearly 45% higher than that of the parent stain. Thus, development of this protocol is expected to accelerate the selection of ε-PL-overproducing strains.
Collapse
Affiliation(s)
- Yong-Juan Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xu-Sheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Jun-Jie Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Long Pan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhong-Gui Mao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
29
|
Identification of a polysaccharide produced by the pyruvate overproducer Candida glabrata CCTCC M202019. Appl Microbiol Biotechnol 2017; 101:4447-4458. [DOI: 10.1007/s00253-017-8245-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 12/22/2022]
|
30
|
Luo Z, Zeng W, Du G, Liu S, Fang F, Zhou J, Chen J. A high-throughput screening procedure for enhancing pyruvate production in Candida glabrata by random mutagenesis. Bioprocess Biosyst Eng 2017; 40:693-701. [DOI: 10.1007/s00449-017-1734-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/07/2017] [Indexed: 12/30/2022]
|
31
|
Zeng W, Fang F, Liu S, Du G, Chen J, Zhou J. Comparative genomics analysis of a series of Yarrowia lipolytica WSH-Z06 mutants with varied capacity for α-ketoglutarate production. J Biotechnol 2016; 239:76-82. [PMID: 27732868 DOI: 10.1016/j.jbiotec.2016.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/16/2016] [Accepted: 10/07/2016] [Indexed: 01/23/2023]
Abstract
Yarrowia lipolytica is one of the most intensively investigated α-ketoglutaric acid (α-KG) producers, and metabolic engineering has proven effective for enhancing production. However, regulation of α-KG metabolism remains poorly understood. Genetic engineering of new strains is accompanied by potential safety concerns in some countries and regions. A series of mutants with varied capacity for α-KG production were obtained using random mutagenesis of Y. lipolytica WSH-Z06. Comparative genomics analysis was implemented to identify genes candidates associated with α-KG production. Manipulation of genes regulating mitochondrial biogenesis and energy metabolism could improve α-KG production, while genes involved in regulating transformation between keto acids and amino acids may decrease production. One gene associated with cell cycle control well represented in all mutants, whereas this gene involved in cell concentration do not appear to influence α-KG production. The results shed light on α-KG production in eukaryotic cells, and pave the way for a high-throughput screening and random mutagenesis method for enhancing α-KG production.
Collapse
Affiliation(s)
- Weizhu Zeng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Fang Fang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
32
|
Li H, Li T, Zuo H, Xiao S, Guo M, Jiang M, Li Z, Li Y, Zou X. A novel rhodamine-based fluorescent pH probe for high-throughput screening of high-yield polymalic acid strains from random mutant libraries. RSC Adv 2016. [DOI: 10.1039/c6ra20394a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polymalic acid (PMA) is produced from the yeast-like fungus Auerobasidium pullulans, and is a water-soluble biopolymer with many useful properties for pharmaceutical applications.
Collapse
Affiliation(s)
- Hongqing Li
- College of Pharmaceutical Sciences
- Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control
- Southwest University
- Chongqing 400715
- P. R. China
| | - Tianfu Li
- College of Pharmaceutical Sciences
- Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control
- Southwest University
- Chongqing 400715
- P. R. China
| | - Hua Zuo
- College of Pharmaceutical Sciences
- Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control
- Southwest University
- Chongqing 400715
- P. R. China
| | - Siyu Xiao
- College of Pharmaceutical Sciences
- Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control
- Southwest University
- Chongqing 400715
- P. R. China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering
- East China University of Science & Technology
- Shanghai 200237
- P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Zhenghua Li
- Anhui Engineering Research for Malic Acid Technology
- Anhui Sealong Biotechnology Co., Ltd
- Bengbu
- P. R. China
| | - Yunzheng Li
- Anhui Engineering Research for Malic Acid Technology
- Anhui Sealong Biotechnology Co., Ltd
- Bengbu
- P. R. China
| | - Xiang Zou
- College of Pharmaceutical Sciences
- Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control
- Southwest University
- Chongqing 400715
- P. R. China
| |
Collapse
|