1
|
Studies on Optimization of Sustainable Lactic Acid Production by Bacillus amyloliquefaciens from Sugarcane Molasses through Microbial Fermentation. SUSTAINABILITY 2022. [DOI: 10.3390/su14127400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lactic acid is the meekest hydroxyl carboxylic acid (2-hydroxy propionic acid) which is a colorless, odorless, hygroscopic, organic compound with no toxic effect, a very inevitable and versatile chemical used in the Food, cosmetics, textile, and pharmaceutical industries for very long years. Lactic acid was produced as non-racemic when specific microbial strains were used; therefore, microbial fermentation gained more attention. Albeit the substratum used for the microbial fermentation price is much exorbitant. Wherefore, identifying the best and cheap substrates is a bottleneck for the scientific community. Sugarcane molasses is the best source of components for microbial growth and cheap raw material for Lactic acid fermentation. This study produced sustainable lactic acid from sugarcane molasses by the Bacillus amyloliquefaciens J2V2AA strain with a higher production of 178 gm/L/24 h. The produced lactic acid was characterized and analyzed by UV-Visible Spectrum, FTIR Spectrum, TLC, and HPLC.
Collapse
|
2
|
Liu L, Gu P, Li C, Zhang B, Tuersuntuoheti T, Zhu B, Liang S, Zhang M. Improve the quality of bog bilberry juice by controlling the inoculation pH and timing of
Lactobacillus plantarum. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Lihong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University Beijing China
| | - Pan Gu
- Beijing Key Laboratory of Forestry Food Processing and Safety Department of Food Science College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Chengjie Li
- Beijing Key Laboratory of Forestry Food Processing and Safety Department of Food Science College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety Department of Food Science College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Tuohetisayipu Tuersuntuoheti
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University Beijing China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety Department of Food Science College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Shan Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University Beijing China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business University Beijing China
| |
Collapse
|
3
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
4
|
Enhancement of GAD Storage Stability with Immobilization on PDA-Coated Superparamagnetic Magnetite Nanoparticles. Catalysts 2019. [DOI: 10.3390/catal9110969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To improve the storage stability of glutamic acid decarboxylase (GAD), superparamagnetic magnetite (Fe3O4) nanoparticles were synthesized by co-precipitation method and coated with polydopamine (PDA) for GAD immobilization. Dynamic light scattering and transmission electron microscopy were used to determine size of the nanoparticles, which were approximately 10 nm, increasing to 15 nm after PDA-coating and to 20 nm upon GAD binding. Vibrational scanning measurements significantly represented the superparamagnetic behavior of the Fe3O4, and X-ray diffraction analysis confirmed that the crystalline structure before and after coating with PDA and the further immobilization of GAD remained the same. Thermogravimetric analysis and Fourier-transform infrared spectroscopy proved that the PDA-coating on Fe3O4 and further immobilization of GAD were successful. After immobilization, the enzyme can be used with a relative specific activity of 40.7% after five successive uses. The immobilized enzyme retained relative specific activity of about 50.5% after 15 days of storage at 4 °C, while free enzyme showed no relative specific activity after two days of storage. The GAD immobilization on PDA-coated magnetite nanoparticles was reported for the improvement of enzyme storage stability for the first time.
Collapse
|
5
|
Sanchez S, Rodríguez-Sanoja R, Ramos A, Demain AL. Our microbes not only produce antibiotics, they also overproduce amino acids. J Antibiot (Tokyo) 2017; 71:ja2017142. [PMID: 29089597 DOI: 10.1038/ja.2017.142] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Abstract
Fermentative production of amino acids is an important goal of modern biotechnology. Through fermentation, micro-organisms growing on inexpensive carbon and nitrogen sources can produce a wide array of valuable products including amino acids. The amino acid market is $8 billion and mainly impacts the food, pharmaceutical and cosmetics industries. In terms of tons of amino acids produced per year by fermentation, L-glutamate is the most important amino acid produced (3.3 million), followed by L-lysine (2.2 million). The bacteria producing these amino acids are among the top fermentation organisms with respect to titers. Corynebacterium glutamicum is the best producer.The Journal of Antibiotics advance online publication, 1 November 2017; doi:10.1038/ja.2017.142.
Collapse
Affiliation(s)
- Sergio Sanchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Allison Ramos
- Charles A Dana Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ, USA
| | - Arnold L Demain
- Charles A Dana Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ, USA
| |
Collapse
|
6
|
Lyu CJ, Zhao WR, Hu S, Huang J, Lu T, Jin ZH, Mei LH, Yao SJ. Physiology-Oriented Engineering Strategy to Improve Gamma-Aminobutyrate Production in Lactobacillus brevis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:858-866. [PMID: 28067044 DOI: 10.1021/acs.jafc.6b04442] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gamma-aminobutyrate (GABA) is an important chemical in the pharmaceutical field. GABA-producing lactic acid bacteria (LAB) offer the opportunity of developing this health-oriented product. In this study, the gadA, gadB, gadC, gadCB, and gadCA gene segments of Lactobacillus brevis were cloned into pMG36e, and strain Lb. brevis/pMG36e-gadA was selected for thorough characterization in terms of GABA production after analysis of GAD activities. Subsequently, a physiology-oriented engineering strategy was adopted to construct an FoF1-ATPase deficient strain NRA6 with higher GAD activity. As expected, strain NRA6 could produce GABA at a concentration of 43.65 g/L with a 98.42% GABA conversion rate in GYP fermentation medium, which is 1.22-fold higher than that obtained by the wild-type strain in the same condition. This work demonstrates how the acid stress response mechanisms of LAB can be employed to develop cell factories with improved production efficiency and contributes to research into the development of the physiology-oriented engineering.
Collapse
Affiliation(s)
- Chang-Jiang Lyu
- College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, China
- School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University , Ningbo 315100, China
| | - Wei-Rui Zhao
- School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University , Ningbo 315100, China
| | - Sheng Hu
- School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University , Ningbo 315100, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, China
| | - Tao Lu
- College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, China
| | - Zhi-Hua Jin
- School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University , Ningbo 315100, China
| | - Le-He Mei
- College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, China
- School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University , Ningbo 315100, China
| | - Shan-Jing Yao
- College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|
7
|
Meng Y, Mumme J, Xu H, Wang K. A biologically inspired variable-pH strategy for enhancing short-chain fatty acids (SCFAs) accumulation in maize straw fermentation. BIORESOURCE TECHNOLOGY 2016; 201:329-336. [PMID: 26687493 DOI: 10.1016/j.biortech.2015.11.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
This study investigates the feasibility of varying the pH to enhance the accumulation of short-chain fatty acids (SCFAs) in the in vitro fermentation of maize straw. The corresponding hydrolysis rate and the net SCFA yield increased as inoculum ratio (VSinoculum/VSsubstrate) increased from 0.09 to 0.79. The pH were maintained at 5.3, 5.8, 6.3, 6.8, 7.3, and 7.8, respectively. A neutral pH of approximately 6.8 was optimal for hydrolysis. The net SCFA yield decreased by 34.9% for a pH of less than 5.8, but remained constant at approximately 721±5mg/gvs for a pH between 5.8 and 7.8. In addition, results were obtained for variable and constant pH levels at initial substrate concentrations of 10, 30 and 50g/L. A variable pH increased the net SCFA yield by 23.6%, 29.0%, and 36.6% for concentrations of 10, 30 and 50g/L. Therefore, a variable pH enhanced SCFA accumulation in maize straw fermentation.
Collapse
Affiliation(s)
- Yao Meng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jan Mumme
- UK Biochar Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, Edinburgh EH9 3JN, UK
| | - Heng Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|