1
|
Ali Z, Abdullah M, Yasin MT, Amanat K, Sultan M, Rahim A, Sarwar F. Recent trends in production and potential applications of microbial amylases: A comprehensive review. Protein Expr Purif 2025; 227:106640. [PMID: 39645158 DOI: 10.1016/j.pep.2024.106640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
α-amylases are vital biocatalysts that constitute a billion-dollar industry with a substantial and enduring global demand. Amylases hydrolyze the α-1,4-glycosidic linkages in starch polymers to generate maltose and malto-oligosaccharides subunits. Amylases are key enzymes that have promising applications in various industrial processes ranging from pharmaceutical, pulp and paper, textile food industries to bioremediation and biofuel sectors. Microbial enzymes have been widely used in industrial applications owing to their ease of availability, cost-effectiveness and better stability at extreme temperatures and pH. α-amylases derived from distinct microbial origins exhibit diverse characteristics, which make them suitable for specific applications. The routine application of immobilized enzymes has become a standard practice in the production of numerous industrial products across the pharmaceutical, chemical, and food industries. This review details the structural makeup of microbial α-amylase to understand its thermodynamic characteristics, aiming to identify key areas that could be targeted for improving the thermostability, pH tolerance and catalytic activity of α-amylase through various immobilization techniques or specific enzyme engineering methods. Additionally, the review briefly explores the enzyme production strategies, potential sources of α-amylases, and use of cost-effective and sustainable raw materials for enzyme production to obtain α-amylases with unconventional applications in various industrial sectors. Major hurdles, challenges and future prospects involving microbial α-amylases has been briefly discussed by considering its diverse applications in industrial bioprocessing.
Collapse
Affiliation(s)
- Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Muhammad Abdullah
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Industrial Biotechnology Devision, National Institute for Biotechnology and Genetics Engineering (NIBGE), 44000, Faisalabad, Pakistan.
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Department of Biotechnology, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Mohsin Sultan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Aqdas Rahim
- Department of Biotechnology, Fatima Jinnah Women University, 46000, Rawalpindi, Pakistan.
| | - Fatima Sarwar
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| |
Collapse
|
2
|
Gupta N, Paul JS, Jadhav SK. Chitosan decorated magnetic nanobiocatalyst of Bacillus derived α-amylase as a role model for starchy wastewater treatment, detergent additive and textile desizer. Bioorg Chem 2024; 151:107673. [PMID: 39068719 DOI: 10.1016/j.bioorg.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
In this study, Bacillus tequilensis TB5 α-amylase from rice-milled by-products (rice bran and de-oiled rice bran) was successfully immobilized onto biologically synthesized magnetic nanoparticles fabricated with chitosan (MNP-Ch) and characterized via different biophysical techniques. Furthermore, the study emphasized incorporating this nanostructure framework (MNP@2mgchitosan_DORB-amy and MNP@3mgchitosan_RB-amy) to offer diverse applications, including enzymatic desizing, cleaning starchy stains, and treating synthetic starchy wastewater. An enzyme loading of > 90 % for both enzymes indicated increased binding sites due to the functional moieties of chitosan on the MNP. The Km was 0.28 and 0.31 mg/mL for the immobilized and free forms of DORB-amy, respectively, and 0.18 and 0.27 mg/mL for the immobilized and free forms of RB-amy, respectively. A low Km indicated an increased affinity of MNP-Ch-immobilized forms of enzymes toward the substrate. The performance of both immobilized enzymes improved at a wide range of pH and temperature, which may be attributed to the covalent binding of the enzyme on to the MNP-Ch. The nanobiocatalysts in the detergent act synergistically to fade the starchy stains. Furthermore, an 8-9 TEGEWA scale rating with > 11 % of starch removal was obtained through the biodesizing of starch-sized cotton fabric. The nanobiocatalyst efficiently decomposed starch and liberated 650-670 mg/L of reducing sugar from the synthetic wastewater, therefore offering promising opportunities for its exploration in a wastewater treatment plant. Thus, the study recommends the potential exploration of sturdy matrices like MNP to offer remarkable applications with maximum operational stability, easier recovery, and higher efficiency.
Collapse
Affiliation(s)
- Nisha Gupta
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010 (CG), India
| | - Jai Shankar Paul
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010 (CG), India.
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010 (CG), India
| |
Collapse
|
3
|
Gupta N, Paul JS, Jadhav SK. Biovalorizing agro-waste 'de-oiled rice bran' for thermostable, alkalophilic and detergent stable α-amylase production with its application as laundry detergent additive and textile desizer. Int J Biol Macromol 2024; 256:128470. [PMID: 38040160 DOI: 10.1016/j.ijbiomac.2023.128470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
The current research was concerned with the use of abundant agro-waste 'de-oiled rice bran (DORB)' as a sustainable substrate to produce α-amylase followed by several targets like process parameter optimization for augmented production and immobilization. In addition, we have also focused on investigating the application of DORB_amy as an efficient laundry detergent additive and textile desizer. The best production was recorded at pH 8.0 at 37 °C after 96 h incubation with 1.5 % (w/v) maltose. The DORB_amy has optimum activity at pH 9.0 at 60 °C with a Km and Vmax of 0.31 mg/mL and 222.22 mg/mL/min respectively. The catalytic performance of DORB_amy was further enhanced after immobilization in 3.0 % calcium alginate beads with 61.95 ± 0.17 % of operational stability after five continuous reaction cycles. The findings showed excellent performance of DORB_amy in cleaning starchy stains. The washing performance of enzyme and detergent together was better than their individual performance which increases the application of α-amylase as a laundry detergent additive. About 17.34 % weight loss or desizing was done by DORB_amy with an 8-9 TEGEWA rating. The reported biochemical features like thermostability, alkalophilic and detergent-stable nature of the DORB_amy make it industrially fit with great significance.
Collapse
Affiliation(s)
- Nisha Gupta
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010, CG, India
| | - Jai Shankar Paul
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010, CG, India.
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010, CG, India
| |
Collapse
|
4
|
Saha SP, Ghosh S, Mazumdar D, Ghosh S, Ghosh D, Sarkar MM, Roy S. Valorization of banana peel into α-amylase using one factor at a time (OFAT) assisted artificial neural network (ANN) and its partial purification, characterization, and kinetics study. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Munawar A, Shaheen M, Ramzan S, Masih SA, Jabeen F, Younis T, Aslam M. DIVERISTY and enzymatic potential of indigenous bacteria from unexplored contaminted soils in Faisalabad. Heliyon 2023; 9:e15256. [PMID: 37095930 PMCID: PMC10122040 DOI: 10.1016/j.heliyon.2023.e15256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
Bacteria residing in contaminated waste soil degrade and utilize organic and inorganic material as a source of nutrients as well as reduce environmental contamination through their enzymatic machinery. This enzymatic potential of indigenous bacteria can be exploited at industrial level through detailed screening, characterization, optimization and purification. In present study, diversity and enzymatic potential of indigenous bacteria was investigated through qualitative and quantitative screening methods from unexplored contaminated soil waste sites in Faisalabad. Shannon diversity (H') index revealed that twenty-eight soil samples from four contaminated sites were highly diverse of amylase, protease and lipase producing bacteria. Maximum protease producing bacteria were detected in fruit waste (1.929 × 107), whereas amylase and lipase producing bacteria were found in industrial (1.475 × 107) and (5.38 × 106), in household waste soil samples. Most of the indigenous bacterial isolates showed potential for multiple enzymes. An isolate OC5 exhibited capability for amylase production and optimization at a wider range of cultural conditions; pH (6-8), temperature (25 °C, 37 °C, 45 °C), incubation time (24-72 h), and NaCl concentrations 0.5-13%, using (1%) starch and lactose as substrates. An isolate OC5 was identified by molecular identification and phylogenetic analysis showed 99% sequence similarity with Bacillus spp. ANOVA was used to analyzed all data statistically. This study enhances the importance of initial screening and reporting of industrially potent indigenous bacteria from unexplored contaminated waste soils. In future, indigenous bacteria in contaminated wastes may be good candidates to solve various environmental pollution problems.
Collapse
Affiliation(s)
- Ayesha Munawar
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Musrat Shaheen
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
- Corresponding author.
| | - Sobia Ramzan
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Somi Akram Masih
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Faiza Jabeen
- Department of Zoology, University of Education, Lahore, 54000, Pakistan
| | - Tahira Younis
- Department of Biochemistry and Biotechnology, The Women University, Multan, Pakistan
| | - Maryam Aslam
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
6
|
Valorization of rice milled by-products (rice husk and de-oiled rice bran) into α-amylase with its process optimization, partial purification and kinetic study. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Golgeri M DB, Mulla SI, Bagewadi ZK, Tyagi S, Hu A, Sharma S, Bilal M, Bharagava RN, Ferreira LFR, Gurumurthy DM, Nadda AK. A systematic review on potential microbial carbohydrases: current and future perspectives. Crit Rev Food Sci Nutr 2022; 64:438-455. [PMID: 35930295 DOI: 10.1080/10408398.2022.2106545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Various studies have shown that the microbial proteins are often more stable than belongs to other sources like plant and animal origin. Hence, the interest in microbial enzymes has gained much attention due to many potential applications like bioenergy, biofuel production, biobleaching, bioconversion and so on. Additionally, recent trends revealed that the interest in isolating novel microbes from harsh environments have been the main focus of many scientists for various applications. Basically, industrially important enzymes can be categorized into mainly three groups: carbohydrases, proteases, and lipases. Among those, the enzymes especially carbohydrases involved in production of sugars. Carbohydrases include amylases, xylanases, pectinases, cellulases, chitinases, mannases, laccases, ligninases, lactase, glucanase, and glucose oxidase. Thus, here, an approach has been made to highlight five enzymes namely amylase, cellulase, laccase, pectinase, and xylanase from different sources with special emphasis on their properties, mechanism, applications, production optimization, purification, molecular approaches for its enhanced and stable production, and also biotechnological perspectives of its future development. Also, green and sustainable catalytic conversion strategies using nanoparticles of these enzymes have also been discussed. This review will provide insight into the carbohydrases importance and their usefulness that will help to the researchers working in this field.
Collapse
Affiliation(s)
- Dilshad Begum Golgeri M
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, India
- Department of Biochemistry, Indian Academy Degree College-Autonomous Kalyanagar, Bangalore, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, India
| | - Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka, India
| | - Swati Tyagi
- IRRI- South Asia Regional centre, Varanasi, Uttar Pradesh, India
| | - Anyi Hu
- Institute of Urban Environment Chinese Academy of Sciences, CAS Key Laboratory of Urban Pollutant Conversion, Xiamen, China
| | - Swati Sharma
- University Institute of Biotechnology (UIBT), Chandigarh University, Mohali, Punjab, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ram Naresh Bharagava
- Department of Microbiology (DM), School for Environmental Sciences (SES), Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | | | | | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| |
Collapse
|
8
|
Gupta N, Beliya E, Paul JS, Jadhav S. Nanoarmoured α-amylase: A route leading to exceptional stability, catalysis and reusability for industrial applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Gupta N, Paul JS, Jadhav SK. In Silico Approaches to Reveal Structural Insights, Stability and Catalysis of Bacillus-Derived α-Amylases Prior to Advance Lab Experiments. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Formula: see text]-amylase is the most widely used Glycoside Hydrolase (GH) in industries for decades. It randomly cleaves the [Formula: see text]-D-(1, 4) glucosidic bonds of [Formula: see text]-polysaccharides (starch and glycogen) to release glucose and short-chain oligosaccharides. Substantial advances have taken place in research related to [Formula: see text]-amylases. However, bioinformatics study needs a little more exploration before conducting wet-lab experiments. We aimed to perform a comparative structure-function relationship study of 10 different Bacillus-derived [Formula: see text]-amylases using several computational biology tools. After aligning all the [Formula: see text]-amylases, 3D structures were made using the SWISS-MODEL. The accuracy and stability of the predicted models were validated via different web servers like Verify-3D, ERRAT, RMSD and ProSA. MolProbity and PROCHECK were used for mapping the residues in the most favored region of the Ramachandran plot. The Ramachandran plot reveals that [Formula: see text] of the amino acid residues of the selected [Formula: see text]-amylase genes lie within the favored region. Our findings suggest that all the [Formula: see text]-amylases were stable as per the validation results we got. The study has revealed clear and concise structural related aspects. This paper will encourage the researchers to include and prioritize in silico work of [Formula: see text]-amylase genes to obtain more accurate outcomes. As the output obtained in this study via in silico tools reveals the structural peculiarity and more about the catalytic domain impression, it highly recommends incorporating such studies for better results. This approach will save efforts, costs and time for researchers.
Collapse
Affiliation(s)
- Nisha Gupta
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010 (CG), India
| | - Jai Shankar Paul
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010 (CG), India
| | - S. K. Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010 (CG), India
| |
Collapse
|
10
|
Duan W, Zhang H, Xie B, Wang B, Hou F, Li A, Dong S, Qin Z, Wang Q, Zhang L. Nitrogen utilization characteristics and early storage root development in nitrogen-tolerant and nitrogen-susceptible sweet potato. PHYSIOLOGIA PLANTARUM 2021; 173:1090-1104. [PMID: 34287931 DOI: 10.1111/ppl.13504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/21/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
In recent years, sweet potato has been cultivated not only in marginal lands but also in fertile plains in northern China. The fertile nitrogen (N)-rich soil may inhibit storage root formation. Cultivars with different N tolerances and split application of reduced N rates should be considered. To investigate the effects of N on the N utilization, root differentiation, and storage root formation of cultivars with different N tolerances, the cultivars Jishu26 (J26) and Xushu32 (X32) were treated with three N levels supplied by urea: 0 (N0), 200 (N1) and 400 mg kg-1 (N2). With increasing N rates, "X32" absorbed less N in plants and distributed more N to developing storage roots than "J26." The storage root development of "J26" was sensitive to both N1 and N2, while that of "X32" was only sensitive to N2. High N nutrition upregulated the expression of certain genes during storage root formation, such as PAL, CHI, F3H, C4 H, 4CL, CAD, α-amylase, and β-amylase. Under N1 and N2, "X32" led to an increased sugar supply in sink organs and downregulated the expression of genes related to lignin and flavonoid synthesis, which promoted the C flux toward starch metabolism, thus reducing lignification and promoting starch accumulation during storage root formation. These results provide evidence for the effects of N on the C distribution in different metabolic pathways by regulating the expression of related key genes. N-tolerant cultivars are suitable in fertile plain areas because of the earlier formation of storage roots under high N conditions.
Collapse
Affiliation(s)
- Wenxue Duan
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Haiyan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Beitao Xie
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Baoqing Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Aixian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Shunxu Dong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Liming Zhang
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
11
|
Gui Y, Zou F, Li J, Zhu Y, Guo L, Cui B. The structural and functional properties of corn starch treated with endogenous malt amylases. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Mustefa Beyan S, Venkatesa Prabhu S, Mumecha TK, Gemeda MT. Production of Alkaline Proteases using Aspergillus sp. Isolated from Injera: RSM-GA Based Process Optimization and Enzyme Kinetics Aspect. Curr Microbiol 2021; 78:1823-1834. [PMID: 33779778 DOI: 10.1007/s00284-021-02446-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Alkaline proteases are well known to be significant industrial enzymes. This study focused on isolating the fungus producing proteases from, a typical Ethiopian food, Injera. Further, the process optimization for protease production using response surface methodology (RSM) and the characterization of the acquired protease were investigated. The 18S rDNA gene sequence homology of the fungus isolate revealed that it was Aspergillus sp. Further, it was deposited in NCBI GenBank with accession number MK4262821. Using the isolate, owing to maximize the protease production, the independent process parameters, temperature, pH, and sucrose concentration were optimized using RSM followed by a genetic algorithm (GA). Based on the statistical approach by RSM-GA optimization, maximum enzyme activity (166.4221 U/ml) was found at 30.5 °C, pH 8.24, and 0.316% sucrose concentration. Also, the crude cocktail of enzymes acquired from optimal condition was partially purified using ammonium which showed that the increased activity by 1.96-fold. Considerably, the partially purified enzyme exhibited stable performance during the temperature range 30-60 °C, pH range 7-10, and NaCl concentration of 0.5-2 mM. Also, the antioxidant activity, degree hydrolysis for the protein, Michaelis-Menten (M-M) kinetic parameters, and activation energy were determined for the obtained enzyme cocktail. It showed that the M-M kinetic parameters, Km (5.54 mg/ml), and Vmax (24.44 mg/ml min) values were observed. Using Arrhenius law, the value of activation energy for the enzyme cocktail was determined as 32.42 kJ/mol.
Collapse
Affiliation(s)
- Surafel Mustefa Beyan
- School of Chemical Engineering, Jimma University, Jimma Institute of Technology, 378, Jimma, Ethiopia.
| | - S Venkatesa Prabhu
- College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Tsegazeab K Mumecha
- Department of Chemical Engineering, Debre Berhan University, Debre Berhan, Ethiopia
| | - Mesfin T Gemeda
- College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Paul JS, Gupta N, Beliya E, Tiwari S, Jadhav SK. Aspects and Recent Trends in Microbial α-Amylase: a Review. Appl Biochem Biotechnol 2021; 193:2649-2698. [PMID: 33715051 DOI: 10.1007/s12010-021-03546-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
α-Amylases are the oldest and versatile starch hydrolysing enzymes which can replace chemical hydrolysis of starch in industries. It cleaves the α-(1,4)-D-glucosidic linkage of starch and other related polysaccharides to yield simple sugars like glucose, maltose and limit dextrin. α-Amylase covers about 30% shares of the total enzyme market. On account of their superior features, α-amylase is the most widely used among all the existing amylases for hydrolysis of polysaccharides. Endo-acting α-amylase of glycoside hydrolase family 13 is an extensively used biocatalyst and has various biotechnological applications like in starch processing, detergent, textile, paper and pharmaceutical industries. Apart from these, it has some novel applications including polymeric material for drug delivery, bioremediating agent, biodemulsifier and biofilm inhibitor. The present review will accomplish the research gap by providing the unexplored aspects of microbial α-amylase. It will allow the readers to know about the works that have already been done and the latest trends in this field. The manuscript has covered the latest immobilization techniques and the site-directed mutagenesis approaches which are readily being performed to confer the desirable property in wild-type α-amylases. Furthermore, it will state the inadequacies and the numerous obstacles coming in the way of its production during upstream and downstream steps and will also suggest some measures to obtain stable and industrial-grade α-amylase.
Collapse
Affiliation(s)
- Jai Shankar Paul
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Nisha Gupta
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Esmil Beliya
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.,Department of Botany, Govt. College, Bichhua, Chhindwara, MP, 480111, India
| | - Shubhra Tiwari
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.
| |
Collapse
|
14
|
Rajesh R, Gummadi SN. α-Amylase and cellulase production by novel halotolerant Bacillus sp.PM06 isolated from sugarcane pressmud. Biotechnol Appl Biochem 2020; 69:149-159. [PMID: 33369761 DOI: 10.1002/bab.2091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/13/2020] [Indexed: 11/11/2022]
Abstract
A novel Bacillus sp.PM06 isolated from sugarcane waste pressmud was tested for extracellular α-amylase and cellulase enzyme production. The effect of different substrates, nitrogen sources, pH, and temperature on growth and extracellular enzyme production was examined. Bacillus sp.PM06 was able to grow with starch and carboxymethyl cellulose (CMC) as a sole source of carbon and ammonium chloride was found to be the best nitrogen source. Maximum enzyme production was obtained at 48 H for both α-amylase and cellulase. The optimal condition for measuring enzyme activity was found to be pH 5.5 at 50 °C for α-amylase and pH 6.4 at 60 °C for cellulase respectively. It was found that Bacillus sp.PM06 exhibited halotolerance up to 2 M Sodium chloride (NaCl) and Potassium chloride (KCl). The isolate could produce α-amylase in the presence of 2 M NaCl and 1 M KCl. However, the strain produced cellulase even in the presence of 2 M NaCl and KCl. Concomitant production of both enzymes was observed when the medium was supplemented with starch and CMC. A maximum of 31 ± 1.15 U/mL of amylase and 15 ± 1.5 U/mL of cellulase was produced in 48 H. The enzyme was partially purified by Ammonium sulphate (NH4 )2 SO4 precipitation with 2.2 and 2.3-fold purification.
Collapse
Affiliation(s)
- Rekha Rajesh
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
15
|
Alpha Amylase from Bacillus pacificus Associated with Brown Algae Turbinaria ornata: Cultural Conditions, Purification, and Biochemical Characterization. Processes (Basel) 2020. [DOI: 10.3390/pr9010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We aimed in the current study, the identification of a marine bacterial amylase produced by Bacillus pacificus, which was associated with Turbinaria ornata. Cultural conditions were optimized for the highest amylase production on Tryptic soy broth media supplemented with starch 1% at initial pH 9, 55 °C for 24 h. The newly purified amylase was characterized for a possible biotechnological application. Data indicated that the obtained amylase with a molecular weight of 40 kD and the N-terminal sequence of the first 30 amino acids of amBp showed a high degree of homology with known alpha amylase, and was stable at 60 °C of pH 11. Among the tested substrate analogs, amBp was almost fully active on Alylose and Alylopectine (97%), but moderately hydrolyzed glycogen < sucrose < maltose < lactose. Therefore, the current amylase mainly generated maltohexaose from starch. Mg2+ and Zn2+ improved amylase activity up to 170%. While ethylenediamine tetraacetic acid (EDTA) similarly induced the greatest activity with purified amylase, PCMB had the least effect. Regarding all these characteristics, amylase from marine bacterial symbionts amBp has a new promising feature for probable therapeutic, industrial, and nutritional applications.
Collapse
|
16
|
Paul JS, Beliya E, Tiwari S, Patel K, Gupta N, Jadhav S. Production of biocatalyst α-amylase from agro-waste ‘rice bran’ by using Bacillus tequilensis TB5 and standardizing its production process. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
In Silico Study and Optimization of Bacillus megaterium alpha-Amylases Production Obtained from Honey Sources. Curr Microbiol 2020; 77:2593-2601. [PMID: 32424606 DOI: 10.1007/s00284-020-02019-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
This study aimed to screen alpha-amylase producing microorganisms from honey as a low water activity medium, a suitable source for selecting stable and cost-beneficial bacterial enzyme production systems. Plackett-Burman method was used to select twelve effective factors including pH, inoculum size, temperature, time, corn starch, KH2PO4, peptone, MgSO4, CaCl2, NaCl, glycerin, and yeast extract concentrations on bacterial alpha-amylases production yield. The Box-Behnken method was utilized to optimize the level of selected significant factors. The stability of bacterial alpha-amylases was also determined in low pH and high-temperature conditions. In addition, in silico study was used to create the alpha-amylase structure and study the stability in high-temperature and low water available condition. Among all isolated and characterized microorganisms, Bacillus megaterium produced the highest amount of alpha-amylases. The in silico data showed the enzyme 3D structure similarity to alpha-amylase from Halothermothrix orenii and highly negative charge amino acids on its surface caused the enzyme activity and stability in low water conditions. Based on Box-Behnken results, the temperature 35 °C, pH 6 and starch 40 g/l were determined as the optimum level of significant factors to achieve the highest alpha-amylases unit (101.44 U/ml). This bacterial alpha-amylases enzyme showed stability at pH 5 and a range of temperatures from 40 to 60 °C that indicates this enzyme may possess the potential for using in industrial processes.
Collapse
|
18
|
Elyasi Far B, Ahmadi Y, Yari Khosroshahi A, Dilmaghani A. Microbial Alpha-Amylase Production: Progress, Challenges and Perspectives. Adv Pharm Bull 2020; 10:350-358. [PMID: 32665893 PMCID: PMC7335993 DOI: 10.34172/apb.2020.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/23/2019] [Accepted: 11/09/2019] [Indexed: 11/24/2022] Open
Abstract
Alpha-amylase reputes for starch modification by breaking of 1-4 glycosidic bands and is widely applied in different industrial sectors. Microorganisms express unique alpha-amylases with thermostable and halotolerant characteristics dependent on the microorganism’s intrinsic features. Likewise, genetic engineering methods are applied to produce enzymes with higher stability in contrast to wild types. As there are widespread application of α-amylase in industry, optimization methods like RSM are used to improve the production of the enzyme ex vivo. This study aimed to review the latest researches on the production improvement and stability of α-amylase.
Collapse
Affiliation(s)
- Babak Elyasi Far
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yassin Ahmadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroshahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azita Dilmaghani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Salem K, Elgharbi F, Ben Hlima H, Perduca M, Sayari A, Hmida-Sayari A. Biochemical characterization and structural insights into the high substrate affinity of a dimeric and Ca 2+ independent Bacillus subtilis α-amylase. Biotechnol Prog 2020; 36:e2964. [PMID: 31951110 DOI: 10.1002/btpr.2964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 11/10/2022]
Abstract
An extracellular amylase (AmyKS) produced by a newly isolated Bacillus subtilis strain US572 was purified and characterized. AmyKS showed maximal activity at pH 6 and 60°C with a half-life of 10 min at 70°C. It is a Ca2+ independent enzyme and able to hydrolyze soluble starch into oligosaccharides consisting mainly of maltose and maltotriose. When compared to the studied α-amylases, AmyKS presents a high affinity toward soluble starch with a Km value of 0.252 mg ml-1 . Coupled with the size-exclusion chromatography data, MALDI-TOF/MS analysis indicated that the purified amylase is a dimer with a molecular mass of 136,938.18 Da. It is an unusual feature of a non-maltogenic α-amylase. A 3D model and a dimeric model of AmyKS were generated showing the presence of an additional domain suspected to be involved in the dimerization process. This dimer arrangement could explain the high substrate affinity and catalytic efficiency of this enzyme.
Collapse
Affiliation(s)
- Karima Salem
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisie
| | - Fatma Elgharbi
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisie
| | - Hajer Ben Hlima
- Unité de Biotechnologie des Algues, ENIS, Université de Sfax, Sfax, Tunisie
| | - Massimiliano Perduca
- Biocrystallography and Nanostructure Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Adel Sayari
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS, Université de Sfax, Sfax, Tunisie
| | - Aïda Hmida-Sayari
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisie
| |
Collapse
|
20
|
Cellulolytic, amylolytic and xylanolytic potential of thermophilic isolates of Surajkund hot spring. J Biosci 2019. [DOI: 10.1007/s12038-019-9938-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Optimization of process parameter for alpha-amylase produced by Bacillus cereus amy3 using one factor at a time (OFAT) and central composite rotatable (CCRD) design based response surface methodology (RSM). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
El-Sayed AKA, Abou-Dobara MI, El-Fallal AA, Omar NF. Heterologous expression, purification, immobilization and characterization of recombinant α-amylase AmyLa from Laceyella sp. DS3. Int J Biol Macromol 2019; 132:1274-1281. [PMID: 30953727 DOI: 10.1016/j.ijbiomac.2019.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 11/27/2022]
Abstract
AmyLa α-amylase gene from Laceyella sp. DS3 was heterologously expressed in E. coli BL21. E. coli BL21 maximally expressed AmyLa after 4 h of adding 0.02 mM IPTG at 37 °C. The recombinant AmyLa α-amylase was purified 2.19-fold through gel filtration and ion exchange chromatography. We immobilized the purified recombinant AmyLa α-amylase on four carriers; chitosan had the best efficiency. The recombinant free and the immobilized AmyLa α-amylase showed optimum activity in the pH ranges of 6.0-7.0 and 4.0-7.0, respectively and possessed an optimum temperature of 55 °C. The free enzyme had activation energy, Km, and Vmax of 291.5 kJ, 1.5 mg/ml, and 6.06 mg/min, respectively. The immobilized enzyme had activation energy, Km, and Vmax of 309.74 kJ, 6.67 mg/ml, and 50 mg/min, respectively. The immobilized enzyme was calcium-independent and insensitive (relative to the free enzyme) to metals. It could also be reused for seven cycles.
Collapse
Affiliation(s)
- Ahmed K A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Egypt
| | | | - Amira A El-Fallal
- Botany and Microbiology Department, Faculty of Science, Damietta University, Egypt
| | - Noha F Omar
- Botany and Microbiology Department, Faculty of Science, Damietta University, Egypt.
| |
Collapse
|
23
|
Elumalai P, Lim JM, Park YJ, Cho M, Shea PJ, Oh BT. Enhanced amylase production by a Bacillus subtilis strain under blue light-emitting diodes. Prep Biochem Biotechnol 2019; 49:143-150. [PMID: 30636516 DOI: 10.1080/10826068.2018.1550656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A chemotrophic, aerobic bacterial strain, Bacillus subtilis B2, was used to produce amylase by submerged fermentation under different light sources. SDS-PAGE indicated that the 55 kDa enzyme belonged to the α-amylase group. B2 was incubated in basal media with 1% soluble starch (pH 7.0) under blue, green, red, and white light-emitting diodes (LEDs), and white fluorescent light. Fermentation under blue LEDs maximized amylase production (180.59 ± 1.6 U/mL at 24 h). Production at 48 h increased to 310.56 ± 1.6 U/mL with 5% glucose as a simple carbon source and to 300.51 ± 1.7 U/mL with 5% groundnut oil cake as an agricultural waste substrate. Activity and stability of the amylase were greatest at pH 7.0 and 45-55 °C. Na+, Ca2+, Mg2+, Co2+, Ba2+, and K+ increased activity, while Ni2+, Hg2+, Mn2+, Cu2+, Fe3+, and Zn2+ inhibited activity. EDTA, PMSF and DTNB reduced activity by 50% or more, while tetrafluoroethylene and 1,10-phenanthroline reduced activity by 30%. The amylase was highly tolerant of the surfactants, compatible with organic solvents, oxidizing agents and the reducing agents reduced activity. These properties suggest utility of amylase produced by B. subtilis B2 under blue LED-mediated fermentation for industrial applications.
Collapse
Affiliation(s)
- Punniyakotti Elumalai
- a Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences , Chonbuk National University , Iksan , South Korea
| | - Jeong-Muk Lim
- a Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences , Chonbuk National University , Iksan , South Korea
| | - Yool-Jin Park
- b Department of Ecology Landscape Architecture-Design, College of Environmental and Bioresource Sciences , Chonbuk National University , Iksan , South Korea
| | - Min Cho
- a Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences , Chonbuk National University , Iksan , South Korea
| | - Patrick J Shea
- c School of Natural Resources , University of Nebraska-Lincoln , Lincoln , Nebraska , USA
| | - Byung-Taek Oh
- a Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences , Chonbuk National University , Iksan , South Korea
| |
Collapse
|
24
|
Jujjavarapu SE, Dhagat S. Evolutionary Trends in Industrial Production of α-amylase. Recent Pat Biotechnol 2019; 13:4-18. [PMID: 30810102 DOI: 10.2174/2211550107666180816093436] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Amylase catalyzes the breakdown of long-chain carbohydrates to yield maltotriose, maltose, glucose and dextrin as end products. It is present in mammalian saliva and helps in digestion. OBJECTIVE Their applications in biotechnology include starch processing, biofuel, food, paper, textile and detergent industries, bioremediation of environmental pollutants and in clinical and medical applications. The commercial microbial strains for production of α-amylase are Bacillus subtilis, B. licheniformis, B. amyloliquefaciens and Aspergillus oryzae. Industrial production of enzymes requires high productivity and cannot use wild-type strains for enzyme production. The yield of enzyme from bacteria can be increased by varying the physiological and genetic properties of strains. RESULTS The genetic properties of a bacterium can be improved by enhancing the expression levels of the gene and secretion of the enzyme outside the cells, thereby improving the productivity by preventing degradation of enzymes. Overall, the strain for specific productivity should have the maximum ability for synthesis and secretion of an enzyme of interest. Genetic manipulation of α-amylase can also be used for the production of enzymes with different properties, for example, by recombinant DNA technology. CONCLUSION This review summarizes different techniques in the production of recombinant α- amylases along with the patents in this arena. The washing out of enzymes in reactions became a limitation in utilization of these enzymes in industries and hence immobilization of these enzymes becomes important. This paper also discusses the immobilization techniques for used α-amylases.
Collapse
Affiliation(s)
| | - Swasti Dhagat
- Department of Biotechnology, National Institute of Technology Raipur, Raipur-492010, India
| |
Collapse
|
25
|
Optimization of Thermo-Alkali Stable Amylase Production and Biomass Yield from Bacillus sp. Under Submerged Cultivation. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3010007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|