1
|
Chen J, Liu T, Zhang Y, Zheng L, Goh KL, Zivkovic V, Zheng M. Ultrasound-assisted enzymatic synthesis of cinnamyl acetate by immobilized lipase on ordered mesoporous silicon with CFD simulation and molecular docking analysis. Food Chem 2025; 464:141843. [PMID: 39509880 DOI: 10.1016/j.foodchem.2024.141843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Flavor esters are used in food and cosmetic industries, but sustainable production remains a big challenging. This study proposed the ultrasound-assisted biosynthesis of cinnamyl acetate using self-made immobilized lipase CSL@OMS-C8, with computational fluid dynamics (CFD) and molecular simulations revealing the hydrodynamic properties and lipase-catalytic mechanisms. The results demonstrate that ultrasonication-intensified enzymatic reaction facilitated 96.6 % conversion of cinnamic alcohol, due to the ultrasound-assisted catalytic efficiency of 13.7 mmol/g·min. Molecular docking analysis identifies the lowest binding energy of -3.7 kcal·mol-1 between lipase and vinyl acetate, contributing to the highest conversion rates compared to acetic acid, ethyl acetate. CFD simulation indicates that ultrasonic energy waves promote substrate diffusion and mixing with lower shear stress. The catalytic stability of CSL@OMS-C8 was confirmed by 60.1 % of relative activity after 10-time reuse. This paper theoretically and experimentally studied the ultrasonic-assisted enzymatic synthesis of cinnamyl acetate, showcasing huge potential for sustainable production of flavor esters.
Collapse
Affiliation(s)
- Jinhang Chen
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Tieliang Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| | - Lu Zheng
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Kheng-Lim Goh
- Newcastle University in Singapore, 567739, Singapore
| | - Vladimir Zivkovic
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
2
|
Chen G, Huang Y, Yu H, Wang J, Li H, Shen S, Zhou X, Shi K, Sun H. Nanoparticles Fueled by Enzyme for the Treatment of Hyperlipidemic Acute Pancreatitis. ACS Biomater Sci Eng 2024; 10:7176-7190. [PMID: 39412351 PMCID: PMC11559557 DOI: 10.1021/acsbiomaterials.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 11/12/2024]
Abstract
Hyperlipidemic acute pancreatitis (HAP) is a serious inflammatory pancreatic disease commonly seen in patients with disorders of lipid metabolism. Decreasing blood triglyceride levels and proinflammatory factors can alleviate hyperlipidemic pancreatitis. The lipase that enhanced the Brownian motion of mesoporous silica in triglyceride solutions could accelerate decomposition of the lipid and improve the efficiency of absorption. In this study, we developed a mesoporous silica nanoparticle with dual modification of IL-6 aptamer and lipase for the treatment of HAP. The nanoparticle could increase the ability of particles to absorb inflammatory factor IL-6 and decompose triglycerides. For every 10 mg of the dual-modified nanoparticles, the efficiency of capturing IL-6 was approximately 9.67 pg/mL and of decomposing triglycerides was approximately 3.88 mg/mL in the plasma of HAP patients within 2 h. In summary, the mesoporous silica nanoparticle could absorb the IL-6 inflammatory factor through IL-6 aptamers and decompose triglycerides through lipase. Furthermore, based on clinically available plasma exchange technology, combined with our developed dual-modified nanoparticles, we designed an absorption device for the treatment of hyperlipidemic pancreatitis; it works to promote the treatment of hyperlipidemic pancreatitis.
Collapse
Affiliation(s)
- Geer Chen
- Department
of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
| | - Yunfeng Huang
- Translational
Medicine Laboratory, The First Affiliated
Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Haohui Yu
- Department
of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
| | - Junru Wang
- Department
of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
| | - Haobing Li
- Translational
Medicine Laboratory, The First Affiliated
Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Shuqi Shen
- Translational
Medicine Laboratory, The First Affiliated
Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xingjian Zhou
- Translational
Medicine Laboratory, The First Affiliated
Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Keqing Shi
- Translational
Medicine Laboratory, The First Affiliated
Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- Cixi
Biomedical Research Institute, Wenzhou Medical
University, Wenzhou 325035, Zhejiang, China
| | - Hongwei Sun
- Department
of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
| |
Collapse
|
3
|
Raja Rajamanikkam SCR, Anbalagan G, Subramanian B, Suresh V, Sivaperumal P. Green Synthesis of Copper and Copper Oxide Nanoparticles From Brown Algae Turbinaria Species' Aqueous Extract and Its Antibacterial Properties. Cureus 2024; 16:e57366. [PMID: 38694645 PMCID: PMC11061661 DOI: 10.7759/cureus.57366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Background Copper and copper oxide nanoparticles synthesized by green methods have attracted considerable attention due to their environmentally friendly properties and potential applications. Green synthesis involves non-hazardous and sustainable techniques used in the production of a wide range of substances, including nanoparticles, pharmaceuticals, and chemicals. These methods often use different organisms, including bacteria, fungi, algae, and plants, each offering different advantages in terms of simplicity, cost-effectiveness, and environmental sustainability. The environmentally friendly nature of these green synthesis methods responds to the growing need for sustainable nanotechnologies. Brown algae have gained popularity due to their distinct morphological characteristics and diverse biochemical composition. This research focuses on the process of synthesizing copper and copper oxide nanoparticles from the brown algae Turbinaria. It emphasizes the natural ability of the bioactive compounds contained in the algae extract to reduce and stabilize the nanoparticles. The green synthesis of copper and copper oxide nanoparticles from brown algae has demonstrated a wide range of applications, including antibacterial activity. Materials and methods Fresh Turbinaria algae were collected from marine environments to ensure that they were free of contaminants. The algae underwent a purification process to remove impurities and were dried. An aqueous extract was prepared by pulverizing the dried algae and mixing them with distilled water. A copper salt solution utilizing copper nitrate was prepared. The algae extract was mixed with the copper salt solution. There are bioactive compounds in the algae extract that help reduce copper ions, which makes copper and copper oxide nanoparticles come together. The reaction mixture was incubated in a controlled environment to facilitate the growth and enhance the stability of the nanoparticles. To separate the nanoparticles from the reaction mixture, centrifugation was employed, or filtration was done with Whatman filter paper (Merck, Burlington, MA). The nanoparticles were dried to yield a stable powder. Results Copper and copper oxide nanoparticles derived from brown algae extract showed antibacterial effects against Streptococcus mutans, Klebsiella sp., and Staphylococcus mutans. The scanning electron microscopy (SEM) analysis verified the irregular shape and elemental content of the synthesized copper and copper oxide nanoparticles. The X-ray diffraction (XRD) analysis indicated that the synthesized nanoparticles exhibited a crystallinity nature and were composed of a mixture of copper and copper oxide species, namely face-centered cubic and monoclinic structures. The transmission electron microscopy (TEM) images showed copper and copper oxide nanoparticles that were evenly distributed and had a rectangular shape. They exhibited substantial antimicrobial activity against both Gram-positive and Gram-negative bacteria. Conclusions This study enhances the field of green synthesis techniques by showcasing the adaptability of Turbinaria brown algae to synthesize copper and copper oxide nanoparticles. It underscores the potential advantages of these nanoparticles in terms of their antibacterial properties.
Collapse
Affiliation(s)
- San Chitta Raj Raja Rajamanikkam
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Geetha Anbalagan
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Balachandran Subramanian
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Vasugi Suresh
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Pitchiah Sivaperumal
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
4
|
do Amaral LFM, Pilissão C, Krieger N, Wypych F. Pseudomonas cepacia lipase immobilized on Zn 2Al layered double hydroxides: Evaluation of different methods of immobilization for the kinetic resolution of ( R,S)-1-phenylethanol. BIOCATAL BIOTRANSFOR 2023. [DOI: 10.1080/10242422.2023.2181047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
| | - Cristiane Pilissão
- Department of Chemistry and Biology, Federal Technological University of Paraná, Curitiba, Brazil
| | - Nadia Krieger
- Postgraduate Program in Chemistry, Federal University of Paraná, Curitiba, Brazil
- Department of Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Fernando Wypych
- Postgraduate Program in Chemistry, Federal University of Paraná, Curitiba, Brazil
- Department of Chemistry, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
5
|
Covalent Immobilization of
Candida antarctica
Lipase B on Functionalized Hollow Mesoporous Silica Nanoparticles. ChemistrySelect 2021. [DOI: 10.1002/slct.202100713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Ghasemi S, Yousefi M, Nikseresht A, Omidi H. Covalent binding and in-situ immobilization of lipases on a flexible nanoporous material. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
First biocatalytic Groebke-Blackburn-Bienaymé reaction to synthesize imidazo[1,2-a]pyridine derivatives using lipase enzyme. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
de Souza TC, de Sousa Fonseca T, de Sousa Silva J, Lima PJM, Neto CACG, Monteiro RRC, Rocha MVP, de Mattos MC, dos Santos JCS, Gonçalves LRB. Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate. Bioprocess Biosyst Eng 2020; 43:2253-2268. [DOI: 10.1007/s00449-020-02411-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/15/2020] [Indexed: 01/24/2023]
|
9
|
Can H, Yıldız T, Onar HÇ. Synthesis of Chiral 1,3‐keto‐acetates through Enzymatic Kinetic Resolution with Amano Lipase from
Pseudomonas fluorescens. ChemistrySelect 2020. [DOI: 10.1002/slct.202001987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hacer Can
- Istanbul University-Cerrahpasa Department of Chemistry Organic Chemistry Division Istanbul Avcilar 34320 Turkey
| | - Tülay Yıldız
- Istanbul University-Cerrahpasa Department of Chemistry Organic Chemistry Division Istanbul Avcilar 34320 Turkey
| | - Hülya Çelik Onar
- Istanbul University-Cerrahpasa Department of Chemistry Organic Chemistry Division Istanbul Avcilar 34320 Turkey
| |
Collapse
|
10
|
The Immobilization of Lipases on Porous Support by Adsorption and Hydrophobic Interaction Method. Catalysts 2020. [DOI: 10.3390/catal10070744] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Four major enzymes commonly used in the market are lipases, proteases, amylases, and cellulases. For instance, in both academic and industrial levels, microbial lipases have been well studied for industrial and biotechnological applications compared to others. Immobilization is done to minimize the cost. The improvement of enzyme properties enables the reusability of enzymes and facilitates enzymes used in a continuous process. Immobilized enzymes are enzymes physically confined in a particularly defined region with retention to their catalytic activities. Immobilized enzymes can be used repeatedly compared to free enzymes, which are unable to catalyze reactions continuously in the system. Immobilization also provides a higher pH value and thermal stability for enzymes toward synthesis. The main parameter influencing the immobilization is the support used to immobilize the enzyme. The support should have a large surface area, high rigidity, suitable shape and particle size, reusability, and resistance to microbial attachment, which will enhance the stability of the enzyme. The diffusion of the substrate in the carrier is more favorable on hydrophobic supports instead of hydrophilic supports. The methods used for enzyme immobilization also play a crucial role in immobilization performance. The combination of immobilization methods will increase the binding force between enzymes and the support, thus reducing the leakage of the enzymes from the support. The adsorption of lipase on a hydrophobic support causes the interfacial activation of lipase during immobilization. The adsorption method also causes less or no change in enzyme conformation, especially on the active site of the enzyme. Thus, this method is the most used in the immobilization process for industrial applications.
Collapse
|
11
|
“Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods”-A review. Anal Chim Acta 2020; 1101:9-22. [DOI: 10.1016/j.aca.2019.11.073] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 01/01/2023]
|
12
|
Wang J, Li K, He Y, Wang Y, Yan J, Xu L, Han X, Yan Y. Lipase Immobilized on a Novel Rigid-Flexible Dendrimer-Grafted Hierarchically Porous Magnetic Microspheres for Effective Resolution of ( R, S)-1-Phenylethanol. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4906-4916. [PMID: 31903759 DOI: 10.1021/acsami.9b19940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the rapid development of biotechnological industry, there is an urgent need for exploiting new materials to immobilize enzymes to improve the performance of biocatalysts. In this paper, hierarchically porous magnetic microspheres (PFMMs) were prepared through solvothermal method and rapidly grafted with a novel rigid-flexible dendrimer first synthesized from monomers of trimesoyl chloride (TMC) and 1,6-hexanediamine (HDA) via interfacial polymerization process for covalent immobilization of Pseudomonas fluorescens lipase (PFL). The maximum PFL loading of the synthesized support reaches 87.5 mgprotein/gsupport, and 864% activity recovery of PFMMs-G3.0-PFL can be achieved at pH 9.0. Then, it was used to catalyze the resolution of (R,S)-1-phenylethanol with vinyl acetate. Under the optimized conditions, 50.0% conversion with 99.0% ees can be reached within 1.5 h. In addition, a conversion of 49.2% and ees of 96.9% can be retained after 10 batches of running, displaying an excellent operational stability. Importantly, a further investigation shows that the obviously improved reusability of the immobilized PFL is ascribed to the increased rigidity in comparison to fully flexible dendrimer. Thus, the newly constructed protocol for lipase immobilization exhibits a great prospect in biochemical engineering.
Collapse
Affiliation(s)
- Jianhua Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Kai Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yaojia He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yao Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Jinyong Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xiaotao Han
- Wuhan National High Magnetic Field Center , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| |
Collapse
|
13
|
Rodrigues RC, Virgen-Ortíz JJ, dos Santos JC, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 2019; 37:746-770. [DOI: 10.1016/j.biotechadv.2019.04.003] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
|
14
|
Bilal M, Iqbal HM. Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coord Chem Rev 2019; 388:1-23. [DOI: 10.1016/j.ccr.2019.02.024] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Inhibition assays of free and immobilized urease for detecting hexavalent chromium in water samples. 3 Biotech 2019; 9:124. [PMID: 30863703 DOI: 10.1007/s13205-019-1661-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
The present work describes the inhibition studies of free as well as immobilized urease by different heavy metals. Porous silicon (PS) films prepared by electrochemical etching were used for urease immobilization by physical adsorption. The enzyme was subjected to varying concentrations of Cr6+, Cr3+, Cu2+, Fe2+, Cd2+ and Ni2+ and analyzed for the variation in the activity. To study the effect of other heavy metals on the interaction of urease and Cr6+, free as well as immobilized urease was subjected to the combination of each metal ion with Cr6+. Results proved the sensitivity of free as well as immobilized urease towards heavy metals by observed reduction in activity. Immobilized urease showed less degree of inhibition compared to free urease when tested for inhibition by individual metal ions and in combination with Cr6+. IC50 values were found higher for inhibition by the combination of metal ions with Cr6+. Interaction of heavy metal ions with functional groups in active site of urease and limitations of mass transfer are the two factors responsible for the variation in activity of urease. Relation between the variation of urease activity and amount of heavy metals can be applied in biosensor development for determining the concentration of Cr6+ present in the water samples.
Collapse
|
16
|
Xing X, Jia JQ, Zhang JF, Zhou ZW, Li J, Wang N, Yu XQ. CALB Immobilized onto Magnetic Nanoparticles for Efficient Kinetic Resolution of Racemic Secondary Alcohols: Long-Term Stability and Reusability. Molecules 2019; 24:molecules24030490. [PMID: 30704049 PMCID: PMC6384578 DOI: 10.3390/molecules24030490] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, an immobilization strategy for magnetic cross-linking enzyme aggregates of lipase B from Candida antarctica (CALB) was developed and investigated. Magnetic particles were prepared by conventional co-precipitation. The magnetic nanoparticles were modified with 3-aminopropyltriethoxysilane (APTES) to obtain surface amino-functionalized magnetic nanoparticles (APTES⁻Fe₃O₄) as immobilization materials. Glutaraldehyde was used as a crosslinker to covalently bind CALB to APTES⁻Fe₃O₄. The optimal conditions of immobilization of lipase and resolution of racemic 1-phenylethanol were investigated. Under optimal conditions, esters could be obtained with conversion of 50%, enantiomeric excess of product (eep) > 99%, enantiomeric excess of substrate (ees) > 99%, and enantiomeric ratio (E) > 1000. The magnetic CALB CLEAs were successfully used for enzymatic kinetic resolution of fifteen secondary alcohols. Compared with Novozym 435, the magnetic CALB CLEAs exhibited a better enantioselectivity for most substrates. The conversion was still greater than 49% after the magnetic CALB CLEAs had been reused 10 times in a 48 h reaction cycle; both ees and eep were close to 99%. Furthermore, there was little decrease in catalytic activity and enantioselectivity after being stored at -20 °C for 90 days.
Collapse
Affiliation(s)
- Xiu Xing
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Jun-Qi Jia
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Jing-Fan Zhang
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zi-Wen Zhou
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Jun Li
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Na Wang
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
17
|
Jin WB, Xu Y, Yu XW. Improved catalytic performance of lipase under non-aqueous conditions by entrapment into alkyl-functionalized mesoporous silica. NEW J CHEM 2019. [DOI: 10.1039/c8nj04312d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Immobilizing lipase r27RCL into octadecyl-functionalized mesoporous silica materials significantly improved the activity and enantioselectivity of the lipase.
Collapse
Affiliation(s)
- Wen-Bin Jin
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Xiao-Wei Yu
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
18
|
Li K, Wang J, He Y, Abdulrazaq MA, Yan Y. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity. J Biotechnol 2018; 281:87-98. [DOI: 10.1016/j.jbiotec.2018.06.344] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/31/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
|
19
|
Lipase Immobilization on Silica Xerogel Treated with Protic Ionic Liquid and its Application in Biodiesel Production from Different Oils. Int J Mol Sci 2018; 19:ijms19071829. [PMID: 29933608 PMCID: PMC6073416 DOI: 10.3390/ijms19071829] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022] Open
Abstract
Treated silica xerogel with protic ionic liquid (PIL) and bifunctional agents (glutaraldehyde and epichlorohydrin) is a novel support strategy used in the effective immobilization of lipase from Burkholderia cepacia (LBC) by covalent binding. As biocatalysts with the highest activity recovery yields, LBC immobilized by covalent binding with epichlorohydrin without (203%) and with PIL (250%), was assessed by the following the hydrolysis reaction of olive oil and characterized biochemically (Michaelis⁻Menten constant, optimum pH and temperature, and operational stability). Further, the potential transesterification activity for three substrates: sunflower, soybean, and colza oils, was also determined, achieving a conversion of ethyl esters between 70 and 98%. The supports and the immobilized lipase systems were characterized using Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), elemental analysis, and thermogravimetric (TG) analysis.
Collapse
|
20
|
Bauwelinck J, Cornet I, Wijnants M, Dams R, Tavernier S. Investigation of the Enzyme‐Catalysed Transesterification of Methyl Acrylate and Sterically Hindered Alcohol Substrates. ChemistrySelect 2018. [DOI: 10.1002/slct.201703136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jordy Bauwelinck
- Faculty of applied engineeringResearch group BioGEMUniversity of Antwerp Salesianenlaan 90 B-2660 Hoboken Belgium
| | - Iris Cornet
- Faculty of applied engineeringResearch group BioGEMUniversity of Antwerp Salesianenlaan 90 B-2660 Hoboken Belgium
| | - Marc Wijnants
- Faculty of applied engineeringResearch group BioGEMUniversity of Antwerp Salesianenlaan 90 B-2660 Hoboken Belgium
| | - Rudolf Dams
- 3 M Belgium BVBA Canadastraat 11 B-2070 Zwijndrecht Belgium
| | - Serge Tavernier
- Faculty of applied engineeringResearch group BioGEMUniversity of Antwerp Salesianenlaan 90 B-2660 Hoboken Belgium
| |
Collapse
|
21
|
Asmat S, Husain Q, Khan MS. A polypyrrole–methyl anthranilate functionalized worm-like titanium dioxide nanocomposite as an innovative tool for immobilization of lipase: preparation, activity, stability and molecular docking investigations. NEW J CHEM 2018. [DOI: 10.1039/c7nj02951a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic of the novel synthesised nanobioconjugates.
Collapse
Affiliation(s)
- Shamoon Asmat
- Department of Biochemistry
- Faculty of Life Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Qayyum Husain
- Department of Biochemistry
- Faculty of Life Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Mohd Shoeb Khan
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
22
|
Zhou L, He Y, Ma L, Jiang Y, Huang Z, Yin L, Gao J. Conversion of levulinic acid into alkyl levulinates: Using lipase immobilized on meso-molding three-dimensional macroporous organosilica as catalyst. BIORESOURCE TECHNOLOGY 2018; 247:568-575. [PMID: 28982086 DOI: 10.1016/j.biortech.2017.08.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
For conversion of biomass-derived levulinic acid into alkyl levulinates, a novel kind of lipase-based biocatalyst was prepared through immobilized lipase B from C. antarctica (CALB) on organosilica material with highly ordered 3D macroporous organosilica frameworks and a 2D hexagonal meso-structure (named 3DOM/m-OS) for the first time. The catalytic performance of the immobilized lipase (NER@3DOM/m-OS) was investigated. NER@3DOM/m-OS was used as biocatalyst to catalyze the esterification reaction between levulinic acid (LA) and n-butanol. Under optimized reaction conditions, 74.59% of ester yield was achieved after 12h of reaction. NER@3DOM/m-OS was also used to production of other alkyl levulinates, the ester yields increased to 84.51% (octyl levulinate) and 91.14% (dodecyl levulinate), respectively. When NER@3DOM/m-OS was used repeatedly in batch reactions, the ester yields of n-butyl, octyl, and dodecyl levulinate could retain 46.18%, 82.33% and 81.25% after 9 reaction cycles, respectively, which was better than commercial lipase Novozym 435 under the same condition.
Collapse
Affiliation(s)
- Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| | - Zhihong Huang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Luyan Yin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
23
|
Madhavan A, Sindhu R, Binod P, Sukumaran RK, Pandey A. Strategies for design of improved biocatalysts for industrial applications. BIORESOURCE TECHNOLOGY 2017; 245:1304-1313. [PMID: 28533064 DOI: 10.1016/j.biortech.2017.05.031] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/28/2017] [Accepted: 05/05/2017] [Indexed: 05/07/2023]
Abstract
Biocatalysts are creating increased interest among researchers due to their unique properties. Several enzymes are efficiently produced by microorganisms. However, the use of natural enzymes as biocatalysts is hindered by low catalytic efficiency and stability during various industrial processes. Many advanced enzyme technologies have been developed to reshape the existing natural enzymes to reduce these limitations and prospecting of novel enzymes. Frequently used enzyme technologies include protein engineering by directed evolution, immobilisation techniques, metagenomics etc. This review summarizes recent and emerging advancements in the area of enzyme technologies for the development of novel biocatalysts and further discusses the future directions in this field.
Collapse
Affiliation(s)
- Aravind Madhavan
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India; Rajiv Gandhi Centre For Biotechnology, Trivandrum 695 014, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India.
| | - Parameswaran Binod
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India; Center of Innovative and Applied Bioprocessing, Sector 81, Mohali, Punjab, India
| |
Collapse
|