1
|
Ahmadi S, Rezaee A. Environmental pollution removal using electrostimulation of microorganisms by alternative current. Enzyme Microb Technol 2024; 174:110369. [PMID: 38101243 DOI: 10.1016/j.enzmictec.2023.110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
The entrance of some toxic and hazardous chemical agents such as antibiotics, pesticides, and herbicides into the environment can cause various problems to human health and the environment. In recent years, researchers have considered the use of electrostimulation in the processes of microbial metabolism and biological systems for the treatment of pollutants in the environment. Although several electrostimulation reports have been presented for pollutant removal, little attention has been paid to alternative current (AC) biostimulation. This study presents a systematic review of microbial electrostimulation using bioelectrochemical systems supplied with AC. The utilization of alternating current bioelectrochemical systems (ACBESs) has some advantages such as the provide of appropriate active biofilms in the electrodes due to the cyclical nature of the current and energy transfer in an appropriate manner on the electrode surfaces. Moreover, the ACBESs can reduce hydraulic time (HRT) under optimal conditions and reduce the cost of converting electricity using AC. In microbial electrostimulation, amplitude (AMPL), waveform, C/N, and current have a significant effect on increasing the removal efficiency of the pollutants. The obtained results of the meta-analysis illustrated that various pollutants such as phenol, antibiotics, and nitrate have been removed in an acceptable range of 96% using the ACBESs. Therefore, microbial electrostimulation using AC is a promising technology for the decomposition and removal of various pollutants. Moreover, the ACBESs could provide new opportunities for promoting various bioelectrochemical systems (BESs) for the production of hydrogen or methane.
Collapse
Affiliation(s)
- Shabnam Ahmadi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Rezaee
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Xie F, Zhao B, Ji L, Antwi P, Li Y, Yue X. Exploring the potential of a novel alternating current stimulated iron‑carbon anammox process: A new horizon for nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168893. [PMID: 38016562 DOI: 10.1016/j.scitotenv.2023.168893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
This study explored a novel alternating current (AC) stimulation approach to enhance the nitrogen removal efficiency of an iron‑carbon based anammox (FeC anammox) system. In the preliminary experiment, the TN removal efficiency of the AC stimulated system was 8.06 % higher than that of a DC simulated system in same current densities of 0.25 mA/cm2. Gene expression analysis revealed that the AC-stimulated system, where, compared with the anammox system alone, the expression of HZS, HDH, NarG, NirS, NorB and NosZ increased by 1.81, 2.50, 1.64, 0.23, 1.15 and 1.27 times, respectively. In the continuous experiment, the TN removal rate increased from 60.13 % to 84.34 % after AC stimulation, and the working time of the FeC materials increased to 20 days. An analysis of the mechanism revealed that the parallel connection between the capacitive reactance and filler resistance in AC might reduce the internal resistance of the system, thereby improving the actual current density received by local microorganisms, and achieving a better strengthening effect.
Collapse
Affiliation(s)
- Fei Xie
- Taiyuan University of Science and Technology, School of Environment and Resources, Taiyuan 030024, PR China
| | - Bowei Zhao
- Taiyuan University of Technology, College of Environmental Science and Engineering, Taiyuan 030024, PR China
| | - Li Ji
- Taiyuan University of Science and Technology, School of Environment and Resources, Taiyuan 030024, PR China
| | - Philip Antwi
- Environment Protection Authority, Center for Applied Sciences, Water Science Unit, Macleod, Victoria 3085, Australia
| | - Yuan Li
- Taiyuan University of Science and Technology, School of Environment and Resources, Taiyuan 030024, PR China
| | - Xiuping Yue
- Taiyuan University of Technology, College of Environmental Science and Engineering, Taiyuan 030024, PR China.
| |
Collapse
|
3
|
Chen H, Yu M, Hou L, Zhang Z, Yao J. Development of partial denitrification process in upflow-anaerobic sludge blanket and effect of electric field on partial denitrification performance. BIORESOURCE TECHNOLOGY 2024; 394:130221. [PMID: 38109975 DOI: 10.1016/j.biortech.2023.130221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Partial denitrification (PD) is an alternative to providing NO2- for the anaerobic ammonium oxidation (anammox) process. In this study, three upflow anaerobic sludge blankets (UASB) were used to investigate the effect of an external electric field on PD performance. The results indicated that the maximum nitrite transformation ratio (NTR) reached 76.3 %, with an average NTR of 54.1 %, in the presence of external electric field, whereas the average NTR of the control was only 49.8 %. The fitted maximum specific nitrate reduction rates of PD1, PD2, and PD3 were 83.7, 90.5, and 92.3 mg N g-1VSS h-1, respectively, according to the Haldane model analysis. Microbial community analysis demonstrated that the abundance of Thauera, Comamonas, and Accumulibacter increased with electric assistance. In summary, UASB reactor with electrodes set in the upper region was most feasible for the stable PD process, providing an alternative for developing a coupled PD-anammox process.
Collapse
Affiliation(s)
- Hui Chen
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Meixia Yu
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, China
| | - Le Hou
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, China
| | - Zhicheng Zhang
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China.
| | - Jun Yao
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
4
|
Hoseinzadeh E, Wei C, Farzadkia M, Rezaee A. Effects of Low Frequency-Low Voltage Alternating Electric Current on Apoptosis Progression in Bioelectrical Reactor Biofilm. Front Bioeng Biotechnol 2020; 8:2. [PMID: 32039189 PMCID: PMC6987302 DOI: 10.3389/fbioe.2020.00002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Bioelectrochemical systems have undergone several modifications to promote the enzymes or pathways used to reduce the energy required for microbial metabolism. Changes in dominant bacteria, population, and growth rates occur when an electric current is applied intermittently. Applying electricity to bioelectrical reactor (BER) biofilms can either stimulate cells or lead to cell death; therefore, determining the applied voltage range that leads to viable and stimulated bacteria is crucial. We investigated the progression of apoptosis induced by a low frequency-low voltage alternating electric current (AC) in a BER biofilm and found that biofilms on carbon cloth (CC) and stainless steel (SS) 304 electrodes had pHzpc values of 8.67. The pHzpc of the biofilms increased by two compared to that of the inoculant bacteria mass. Furthermore, the Henderson–Hasselbalch equation reveals that the compositions of cell walls of the biofilms that formed on the CC and SS304 electrodes are very similar. In contrast, the CC and SS304 biofilms differ from the inoculant biomass without the influence of an AC field; this indicates that there are differences in the compositions of the cell walls in the present bacteria. Fourier transform infrared spectroscopy was used to compare spectra of the biofilms with that of the inoculation mass, and there were differences in shape and absorbance intensity, indicating variability in the composition, and quantity of each individual biofilm component. In addition, the dehydrogenase activity (DHA) content varied under different applied voltages; the highest DHA was obtained at 8 Vpp. A flow cytometry analysis showed a relatively low number of apoptotic cells (10.93 ± 5.19%) for the AC amplitudes studied. Thus, a low voltage-low frequency AC likely induces significant changes in bacterial metabolic activity but causes no significant change in their viability.
Collapse
Affiliation(s)
- Edris Hoseinzadeh
- Department of Environmental Health Engineering, Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Chiang Wei
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Mahdi Farzadkia
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Rezaee
- Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Moghiseh Z, Rezaee A, Ghanati F, Esrafili A. Metabolic activity and pathway study of aspirin biodegradation using a microbial electrochemical system supplied by an alternating current. CHEMOSPHERE 2019; 232:35-44. [PMID: 31152901 DOI: 10.1016/j.chemosphere.2019.05.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
The main aim of this study is to investigate the biodegradation of highly concentrated aspirin as an emerging pollutant from aqueous solution using an alternating current microbial electrochemical system. A single-chamber Plexiglas cylindrical reactor equipped with stainless steel mesh electrodes (18 cm height × 16 cm diameter) was applied as the bioreactor in batch mode with an effective volume of 5 L, height of 20 cm, and the diameter about 20 cm by AMPL = 2 Vpp, OFST = 0.1 V, waveform = sinusoidal, frequency = 10 Hz, and pH = 7. The process parameters including initial concentration (100-400 mg L-1), chemical oxygen demand (COD), activity of enzymes, biokinetic and pathway studies at very low voltage and very low frequency alternating current were investigated. The specific biodegradation rate of aspirin was calculated based on Michaelis-Menten model. The complete aspirin removal efficiency and the maximum enzymatic activity were achieved at 250 mg L-1 aspirin, voltage of 2 Vpp and applied current = 3 mA during 6 h. The bioassay of aspirin concentrations in biofilm of the system using flow cytometry analysis resulted in the live and necrotic cells shares of 96.2%, and 0.44%, respectively. Moreover, the LC and GC-MS analysis showed low molecular weight acids such as oxalic and acetic acid at 6 h time under the optimal conditions using very low applied voltage and frequency. Obtaining low reaction time for degradation, high potential in biodegradation, oxidation and mineralization ability were the novelty of treatment system with high concentration aspirin in the study.
Collapse
Affiliation(s)
- Zohreh Moghiseh
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Rezaee
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Arvin A, Hosseini M, Amin MM, Najafpour Darzi G, Ghasemi Y. Efficient methane production from petrochemical wastewater in a single membrane-less microbial electrolysis cell: the effect of the operational parameters in batch and continuous mode on bioenergy recovery. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:305-317. [PMID: 31321049 PMCID: PMC6582024 DOI: 10.1007/s40201-019-00349-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/27/2019] [Indexed: 06/10/2023]
Abstract
The main objective of this study is to evaluate the treatment and simultaneous production of methane from low-strength petrochemical wastewater by single membrane-less microbial electrolysis cells. To achieve this objective, the influence of variables such as applied voltage, operation mode, and hydraulic retention time (HRT) on the performance of the MEC system was investigated over a period of 110 days. According to the obtained results, the maximum COD removal efficiency in the batch mode was higher than which in the continuous mode (i.e. 85.9% vs 75.3%). However, the maximum methane production in the continuous mode was almost 1.6 times higher than which in the batch mode. The results show, COD removal, methane content, and methane production in both operation modes, were enhanced as applied voltage increased from 0.6 to 0.8-1 V. The proportion of methane, methane production rate, and COD removal were increased as HRT decreased from 72 to 48 h, while these values were decreased as the HRT decreased from 48 to 12 h. In continues mode, the energy efficiency had a range of 94.7% to 97.9% with an average of 96.6% in phase III, which almost recovered all of the electrical energy input into the system. These results suggest that single membrane-less microbial electrolysis cell is a promising process in order to the treatment of low-strength wastewater and methane production.
Collapse
Affiliation(s)
- Amin Arvin
- Department of Chemical Engineering, Babol Noshirvani University of Technology, P.O.B. 484, Babol, Iran
| | - Morteza Hosseini
- Department of Chemical Engineering, Babol Noshirvani University of Technology, P.O.B. 484, Babol, Iran
| | - Mohammad Mehdi Amin
- Environmental Health Engineering Department, Isfahan University of Medical Science, Isfahan, Iran
| | - Ghasem Najafpour Darzi
- Department of Chemical Engineering, Babol Noshirvani University of Technology, P.O.B. 484, Babol, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Guo Y, Zhang B, Zhang Z, Shi W, Zhang R, Cheng J, Li W, Cui F. Enhanced aerobic granulation by applying the low-intensity direct current electric field via reactive iron anode. WATER RESEARCH 2019; 149:159-168. [PMID: 30439579 DOI: 10.1016/j.watres.2018.10.095] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
A novel granulation strategy by applying the low-intensity direct current (DC) electric field via reactive iron anode into the aerobic granular sludge (AGS) system was systematically investigated in this study. Three identical sequencing batch reactors (SBRs, namely R1, R2, and R3) were operated for 100 days. Comparatively, the R1 and R3 were continuously subjected to the 1.0 V DC electric field via a reactive Fe anode and an inert Ti-Ir/Rh anode, respectively, while the R2 without DC exposure. The results showed that the sludge granulation processes were accelerated in order as follows: R2<R3<R1, and the properties of mature granules were improved in order as follows: R3<R2<R1. Interestingly, at the end of experiment, total phosphorus (TP) removal efficiency in R1 dramatically increased to 80.52%, which was 2.15 and 1.96 folds than that in R2 and R3, respectively. Further investigations revealed that this novel strategy could simultaneously improve the secretion of EPS and the release of iron ions in R1, which cooperatively enhanced the granulation process. Moreover, in R1, mineral precipitation of phosphate remarkably improved the capability of phosphorus removal. The observed effective and stable performance highlights the feasibility and potential of this novel strategy for the rapid start-up and stable operation of AGS system.
Collapse
Affiliation(s)
- Yuan Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiqiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenxin Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400044, China.
| | - Ruijun Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
8
|
Dehghani S, Rezaee A, Hosseinkhani S. Effect of alternating electrical current on denitrifying bacteria in a microbial electrochemical system: biofilm viability and ATP assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33591-33598. [PMID: 30269283 DOI: 10.1007/s11356-018-3170-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
The present study considers the impact of the alternating electric current on the viability and biological activity of denitrifying bacteria in a microbial electrochemical system (MES). The bio-stimulation using low-frequency low-voltage alternating current (AC) was studied in terms of the adenosine triphosphate (ATP) level of bacteria, viability, morphological characteristics, cell size, and complexity. Apoptosis assays by flow cytometry revealed that 81-95% of the cells were non-apoptotic, and cell membrane damage occurred < 18%. The applied AC could affect the bacterial metabolic activity and ATP content in the denitrifying bacteria depending on characteristics of the alternating electric current. Scanning electron microscopy (SEM) analysis of cell morphology illustrated low cell deformations under AC stimulation. The obtained results revealed that the applied alternating electrical current could increase the metabolic activity of denitrifying bacteria, leading to a better denitrification. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Somayyeh Dehghani
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Rezaee
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Hoseinzadeh E, Rezaee A, Farzadkia M. Nitrate removal from pharmaceutical wastewater using microbial electrochemical system supplied through low frequency-low voltage alternating electric current. Bioelectrochemistry 2018; 120:49-56. [DOI: 10.1016/j.bioelechem.2017.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/19/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022]
|
10
|
Hoseinzadeh E, Rezaee A, Farzadkia M. Enhanced biological nitrate removal by alternating electric current bioelectrical reactor: Selectivity and mechanism. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|