1
|
Khuntong S, Samranrit T, Koedprasong P, Teeka J, Chiu CH, Srila W, Areesirisuk A. Synergistic effects of Tween 20 and ethephon on yeast oil and β-carotene co-production by Rhodosporidium toruloides using purified biodiesel-derived crude glycerol as an alternative carbon source. BIORESOURCE TECHNOLOGY 2025; 422:132211. [PMID: 39938602 DOI: 10.1016/j.biortech.2025.132211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/15/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
This study investigated the impact of chemical inducers on the co-production of yeast oil (YO) and β-carotene from purified biodiesel-derived crude glycerol. The objective was to enhance YO and β-carotene co-production in Rhodosporidium toruloides through the application of individual and combined inducers at both flask and bioreactor scales. Among the individual inducers, 1 % w/v Tween 20 (TW) and 10 ppm ethephon (EP) significantly increased total yeast oil (TO) and total β-carotene (TC) concentrations, respectively. When TW and EP were used together, TO and TC production increased by 2.0 and 2.6-fold, respectively in the bioreactor compared to the flask. The YO primarily consisted of C16 and C18 long-chain fatty acids, and the β-carotene produced showed functional similarities to commercial β-carotene. This research highlights the potential of biodiesel waste as a sustainable feedstock for co-producing YO and β-carotene, with the dual-inducer strategy providing a simple and effective method for enhancing production efficiency.
Collapse
Affiliation(s)
- Sasitorn Khuntong
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Thidarat Samranrit
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Parichat Koedprasong
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Jantima Teeka
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Chiu-Hsia Chiu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC
| | - Witsanu Srila
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Atsadawut Areesirisuk
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand.
| |
Collapse
|
2
|
Wang J, Ma W, Ma W, Fang Z, Jiang Y, Jiang W, Kong X, Xin F, Zhang W, Jiang M. Strategies for the efficient biosynthesis of β-carotene through microbial fermentation. World J Microbiol Biotechnol 2024; 40:160. [PMID: 38607448 DOI: 10.1007/s11274-024-03955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
β-Carotene is an orange fat-soluble compound, which has been widely used in fields such as food, medicine and cosmetics owing to its anticancer, antioxidant and cardiovascular disease prevention properties. Currently, natural β-carotene is mainly extracted from plants and algae, which cannot meet the growing market demand, while chemical synthesis of β-carotene cannot satisfy the pursuit for natural products of consumers. The β-carotene production through microbial fermentation has become a promising alternative owing to its high efficiency and environmental friendliness. With the rapid development of synthetic biology and in-depth study on the synthesis pathway of β-carotene, microbial fermentation has shown promising applications in the β-carotene synthesis. Accordingly, this review aims to summarize the research progress and strategies of natural carotenoid producing strain and metabolic engineering strategies in the heterologous synthesis of β-carotene by engineered microorganisms. Moreover, it also summarizes the adoption of inexpensive carbon sources to synthesize β-carotene as well as proposes new strategies that can further improve the β-carotene production.
Collapse
Affiliation(s)
- Jingnan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wenqi Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Weixu Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Zhanyang Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Xiangping Kong
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| |
Collapse
|
3
|
Wang L, Qi A, Liu J, Shen Y, Wang J. Comparative metabolic analysis of the adaptive Candida tropicalis to furfural stress response. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Li Z, Li C, Cheng P, Yu G. Rhodotorula mucilaginosa—alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon 2022; 8:e11505. [DOI: 10.1016/j.heliyon.2022.e11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
|
5
|
Pathway engineering of Saccharomyces cerevisiae for efficient lycopene production. Bioprocess Biosyst Eng 2021; 44:1033-1047. [PMID: 33486569 DOI: 10.1007/s00449-020-02503-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
To construct a Saccharomyces cerevisiae strain for efficient lycopene production, we used a pathway engineering strategy based on expression modules comprising fusion proteins and a strong constitutive promoter. The two recombinant plasmids pEBI encoding the fusion genes with an inducible promoter, as well as pIETB with a constitutive promoter and terminator were introduced into S. cerevisiae YPH499 and BY4741 to obtain the four recombinant strains ypEBI, ypIETB, byEBI and byIETB. The lycopene production and the transcription levels of key genes were higher in the BY4741 chassis than in YPH499. Accordingly, the content of total and unsaturated fatty acids was also higher in BY4741, which also exhibited a decrease of glucose, increase of trehalose, increase of metabolite in citrate cycle, and low levels of amino acids. These changes rerouted metabolic fluxes toward lycopene synthesis, indicating that the BY4741 chassis was more suitable for lycopene synthesis. The lycopene content of bpIETB in SG-Leu medium supplemented with 100 mg/L of linolenic acid reached 10.12 mg/g dry cell weight (DCW), which was 85.7% higher than without the addition of unsaturated fatty acids. The constitutive promoter expression strategy employed in this study achieved efficient lycopene synthesis in S. cerevisiae, and the strain bpIETB was obtained a suitable chassis host for lycopene production, which provides a basis for further optimization of lycopene production in artificial synthetic cells and a reference for the multi-enzyme synthesis of other similar complex terpenoids.
Collapse
|
6
|
Lv PJ, Qiang S, Liu L, Hu CY, Meng YH. Dissolved-oxygen feedback control fermentation for enhancing β-carotene in engineered Yarrowia lipolytica. Sci Rep 2020; 10:17114. [PMID: 33051539 PMCID: PMC7555900 DOI: 10.1038/s41598-020-74074-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023] Open
Abstract
The DO-stat fed-batch fermentation was carried out to explore the volumetric productivity of β-carotene in engineered Yarrowia lipolytica C11 strain. Using DO-stat fed-batch fermentation, we achieved 94 g/L biomass and 2.01 g/L β-carotene. Both biomass and β-carotene were about 1.28-fold higher than that in fed-batch fermentation. The ATP, NADP+/NADPH, and gene expression levels of tHMG, GGS1, carRA, and carB were promoted as compared to that in fed-batch fermentation. As for as the kinetic parameters in DO-stat fed-batch fermentation, μm', Yx/s', and Yp/s' was 0.527, 0.353, and 0.158, respectively. The μm' was elevated 4.66-fold than that in fed-batch fermentation. These data illustrate that more dissolved oxygen increased the biomass. The Yx/s' and Yp/s' were increased 1.15 and 22.57-fold, which suggest that the DO-stat fed-batch fermentation reduced the Crabtree effect and improved the utilization rate of glucose. Therefore, DO-stat fed-batch fermentation is a promising strategy in the industrialized production of β-carotene.
Collapse
Affiliation(s)
- Peng Jun Lv
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, 710119, P.R. China
| | - Shan Qiang
- Xian Healthful Biotechnology Co., Ltd., Hang Tuo Road, Changan, Xi'an, 710100, People's Republic of China
| | - Liang Liu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, 710119, P.R. China
| | - Ching Yuan Hu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, 710119, P.R. China
| | - Yong Hong Meng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, 710119, P.R. China.
| |
Collapse
|
7
|
Pan X, Wang B, Duan R, Jia J, Li J, Xiong W, Ling X, Chen C, Huang X, Zhang G, Lu Y. Enhancing astaxanthin accumulation in Xanthophyllomyces dendrorhous by a phytohormone: metabolomic and gene expression profiles. Microb Biotechnol 2020; 13:1446-1460. [PMID: 32426951 PMCID: PMC7415379 DOI: 10.1111/1751-7915.13567] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/01/2022] Open
Abstract
Xanthophyllomyces dendrorhous is a promising source of natural astaxanthin due to its ability to accumulate high amounts of astaxanthin. This study showed that 6‐benzylaminopurine (6‐BAP) is an effective substrate that enhances cell biomass and astaxanthin accumulation in X. dendrorhous. In the current study, the biomass and astaxanthin content in X. dendrorhous were determined to be improved by 21.98% and 24.20%, respectively, induced by 6‐BAP treatments. To further understand the metabolic responses of X. dendrorhous to 6‐BAP, time‐course metabolomics and gene expression levels of X. dendrorhous cultures with and without 6‐BAP feeding were investigated. Metabolome analysis revealed that 6‐BAP facilitated glucose consumption, promoted the glycolysis, suppressed the TCA cycle, drove carbon flux of acetyl‐CoA into fatty acid and mevalonate biosynthesis, and finally facilitated the formation of astaxanthin. ROS analysis suggested that the antioxidant mechanism in X. dendrorhous can be induced by 6‐BAP. Additionally, the process of 6‐BAP significantly upregulated the expression of six key genes involved in pathways related to astaxanthin biosynthesis. This research demonstrates the metabolomic mechanism of phytohormone stimulation of astaxanthin production iNn X. dendrorhous and presents a new strategy to improve astaxanthin production to prevent the dilemma of choosing between accumulation of astaxanthin and cell biomass.
Collapse
Affiliation(s)
- Xueshan Pan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Baobei Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Ran Duan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jing Jia
- SDIC Biotechnology Investment Co. Ltd, State Development and Investment Corporation, Beijing, 100034, China
| | - Jun Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Weide Xiong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Cuixue Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaohong Huang
- Department of Stomatology, Medical College, Xiamen University, Xiamen, 361005, China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Liu Y, Shao YR, Li XY, Wang ZM, Yang LR, Zhang YZ, Wu MB, Yao JM. Analysis of nicotine-induced metabolic changes in Blakeslea trispora by GC-MS. J Zhejiang Univ Sci B 2020; 21:172-177. [PMID: 32115914 PMCID: PMC7076348 DOI: 10.1631/jzus.b1900459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/07/2019] [Indexed: 11/11/2022]
Abstract
Blakeslea trispora is a natural source of carotenoids, including β-carotene and lycopene, which have industrial applications. Therefore, classical selective breeding techniques have been applied to generate strains with increased productivity, and microencapsulated β-carotene preparation has been used in food industry (Li et al., 2019). In B. trispora, lycopene is synthesized via the mevalonate pathway (Venkateshwaran et al., 2015). Lycopene cyclase, which is one of the key enzymes in this pathway, is a bifunctional enzyme that can catalyze the cyclization of lycopene to produce β-carotene and exhibit phytoene synthase activity (He et al., 2017).
Collapse
Affiliation(s)
- Yang Liu
- Biotechnology Center, Institute of Plasma Physics and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - You-ran Shao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiang-yu Li
- Biotechnology Center, Institute of Plasma Physics and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- CABIO Bioengineering (Wuhan) Co. Ltd., Wuhan 436070, China
| | - Zhi-ming Wang
- CABIO Bioengineering (Wuhan) Co. Ltd., Wuhan 436070, China
| | - Li-rong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu-zhou Zhang
- Biotechnology Center, Institute of Plasma Physics and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Mian-bin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Key Laboratory of Antifungal Drugs, Taizhou 318000, China
| | - Jian-ming Yao
- Biotechnology Center, Institute of Plasma Physics and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Liu Y, Li XY, Lu SH, Yu C, Zhang YZ, Wang ZM, Yao JM. Comparative Metabolic Responses Induced by Pyridine and Imidazole in Blakeslea trispora. Front Bioeng Biotechnol 2019; 7:347. [PMID: 31824936 PMCID: PMC6886401 DOI: 10.3389/fbioe.2019.00347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
Lycopene cyclase needs to be inhibited by the blockers like pyridine or imidazole in the lycopene accumulation of Blakeslea trispora. This work investigated how pyridine and imidazole impacted the basal metabolism of B. trispora, the results helped us understand how they could affect the lycopene production and application, and see the metabolic risks from different inhibitors. In this study, the highest yield of lycopene with pyridine was obtained at 176 mg/L without amino acids supplement, and got more lycopene at 237 mg/L adding tyrosine, lysine, proline all together as 0.01 mol/L each in fermented broth. GC-MS and Principal Component Analysis (PCA) were used to find that amino acids, fatty acids, organic acids including phosphoric acid, carbon source and imidazole derivatives played the most important roles in lycopene fermentation with imidazole, differently, fatty acids, carbon source, and pyridine derivatives were more significant in the pyridine process and it was remarkable that the residual of both blockers' derivatives would bring the potential risks on applications of lycopene products. Predominantly, durene met 0.35 mg/g DCW with imidazole and piperidine formaldehyde attained 0.24 mg/g DCW with pyridine after the end of lycopene fermentations.
Collapse
Affiliation(s)
- Yang Liu
- Biotechnology Center, Institute of Plasma Physics, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China.,CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Xiang-Yu Li
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Shu-Huan Lu
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Chao Yu
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Yu-Zhou Zhang
- Biotechnology Center, Institute of Plasma Physics, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | | | - Jian-Ming Yao
- Biotechnology Center, Institute of Plasma Physics, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Integrated proteomic and metabolomic analysis suggests high rates of glycolysis are likely required to support high carotenoid accumulation in banana pulp. Food Chem 2019; 297:125016. [DOI: 10.1016/j.foodchem.2019.125016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 11/20/2022]
|
11
|
Gmoser R, Ferreira JA, Taherzadeh MJ, Lennartsson PR. Post-treatment of Fungal Biomass to Enhance Pigment Production. Appl Biochem Biotechnol 2019; 189:160-174. [PMID: 30957195 PMCID: PMC6689318 DOI: 10.1007/s12010-019-02961-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/30/2019] [Indexed: 11/25/2022]
Abstract
A new post-treatment method of fungal biomass after fermentation is revealed. The post-treatment strategy was utilized to produce pigments as an additional valuable metabolite. Post-treatment included incubation at 95% relative humidity where the effects of harvesting time, light, and temperature were studied. Pigment-producing edible filamentous fungus Neurospora intermedia cultivated on ethanol plant residuals produced 4 g/L ethanol and 5 g/L fungal biomass. Harvesting the pale biomass after 48 h submerged cultivation compared to 24 h or 72 h increased pigmentation in the post-treatment step with 35% and 48%, respectively. The highest pigment content produced, 1.4 mg/g dry fungal biomass, was obtained from washed biomass treated in light at 35 °C whereof the major impact on pigmentation was from washed biomass. Moreover, post-treated biomass contained 50% (w/w) crude protein. The post-treatment strategy successfully adds pigments to pre-obtained biomass. The pigmented fungal biomass can be considered for animal feed applications for domestic animals.
Collapse
Affiliation(s)
- Rebecca Gmoser
- Swedish Centre for Resource Recovery, University of Borås, Allégatan 1, 503 32, Borås, Sweden.
| | - Jorge A Ferreira
- Swedish Centre for Resource Recovery, University of Borås, Allégatan 1, 503 32, Borås, Sweden
| | - Mohammad J Taherzadeh
- Swedish Centre for Resource Recovery, University of Borås, Allégatan 1, 503 32, Borås, Sweden
| | - Patrik R Lennartsson
- Swedish Centre for Resource Recovery, University of Borås, Allégatan 1, 503 32, Borås, Sweden
| |
Collapse
|
12
|
Shariati S, Zare D, Mirdamadi S. Screening of carbon and nitrogen sources using mixture analysis designs for carotenoid production by Blakeslea trispora. Food Sci Biotechnol 2019; 28:469-479. [PMID: 30956859 PMCID: PMC6431355 DOI: 10.1007/s10068-018-0484-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/26/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022] Open
Abstract
The production of many secondary metabolites such as carotenoids is influenced by the type of carbon and nitrogen sources and C:N ratio applied in culture medium. The present study discusses the role of C:N ratio and screening of carbon and nitrogen sources using mixture analysis design in carotenoids production by Blakeslea trispora. The C:N ratios of 20, 40, and 60 with six nitrogen sources were evaluated. Results indicated that limitation of nitrogen source (C:N of 60) could improve carotenoids production. Six nitrogen and carbon sources were then screened using mixture analysis design. The most effective nitrogen and carbon sources were soybean powder and glucose, respectively. The productivity of carotenoids (983.8 ± 31.5 mg/L) based on consumed nitrogen and carbon source was 189.10 mg/g soybean powder and 19.66 mg/g glucose. Mixture analysis design indicated single carbon and nitrogen source were more effective than a mixture of sources for carotenoids production.
Collapse
Affiliation(s)
- Sepideh Shariati
- Pharmaceutical Sciences Branch, Islamic Azad University, 1941933111 Tehran, Islamic Republic of Iran
| | - Davood Zare
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 33535111, Tehran, Islamic Republic of Iran
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 33535111, Tehran, Islamic Republic of Iran
| |
Collapse
|