1
|
Meza-Velázquez JA, Aguilera-Ortiz M, Ragazzo-Sanchez JA, León JARD, Minjares-Fuentes JR, Luna-Zapién EA. Combined application of high pressure and ultrasound in fig paste: effect on bioactive and volatile compounds. Food Sci Biotechnol 2024; 33:1103-1112. [PMID: 38440688 PMCID: PMC10908685 DOI: 10.1007/s10068-023-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/27/2023] [Accepted: 08/01/2023] [Indexed: 03/06/2024] Open
Abstract
The combined impact of high-hydrostatic pressure (HHP) and ultrasound (US) on the cyanidin-3-O-rutinoside (C3R), quercetin-3-O-rutinoside (Q3R), and volatile compounds from fig (Ficus carica) paste was investigated. The HHP increased the content of C3R and Q3R, from 70 to 133 mg/kg fw and 31 to 44 mg/kg fw, respectively. The combination of HHP and US further enhanced the extraction of these bioactive compounds. Specifically, processing fig paste with US for 5 min at 40 °C yielded approximately 250 mg of C3R/kg fw and 45 mg of Q3R/kg fw, after 20 min. More than 25 volatile compounds were identified, with benzaldehyde being the predominant compound, accounting > 75%. Trace amounts of hydroxymethylfurfural (< 0.36 mg/100 g fw) were detected in HHP-processed fig paste. The application of HHP at mild temperatures and short time, combined with US, effectively promotes the content of bioactive compounds present in fig paste without adversely affecting the fruit's volatile compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01410-1.
Collapse
Affiliation(s)
- J. A. Meza-Velázquez
- Faculty of Chemical Sciences, Juarez University of the State of Durango. Av, Articulo 123 S/N Fracc Philadelphia, 35010 Gómez Palacio, Dgo Mexico
| | - M. Aguilera-Ortiz
- Faculty of Chemical Sciences, Juarez University of the State of Durango. Av, Articulo 123 S/N Fracc Philadelphia, 35010 Gómez Palacio, Dgo Mexico
| | - J. A. Ragazzo-Sanchez
- Integral Food Laboratory, Technological Institute of Tepic, Av. Tecnológico 2595 Lagos de Country, 63175 Tepic Nay, Mexico
| | - J. A. Ramírez-De León
- Department of Food Science and Technology, UAM Reynosa-Aztlán, UAT Calle 16 and Lake Chapala. Col. Aztlan, 88743 Reynosa, Tamps Mexico
| | - J. R. Minjares-Fuentes
- Faculty of Chemical Sciences, Juarez University of the State of Durango. Av, Articulo 123 S/N Fracc Philadelphia, 35010 Gómez Palacio, Dgo Mexico
| | - E. A. Luna-Zapién
- Faculty of Chemical Sciences, Juarez University of the State of Durango. Av, Articulo 123 S/N Fracc Philadelphia, 35010 Gómez Palacio, Dgo Mexico
| |
Collapse
|
2
|
Boateng ID, Clark K. Trends in extracting Agro-byproducts' phenolics using non-thermal technologies and their combinative effect: Mechanisms, potentials, drawbacks, and safety evaluation. Food Chem 2024; 437:137841. [PMID: 37918151 DOI: 10.1016/j.foodchem.2023.137841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The agro-food industries generate significant waste with adverse effects. However, these byproducts are rich in polyphenols with diverse bioactivities. Innovative non-thermal extraction (NTE) technologies (Naviglio extractor®, cold plasma (CP), high hydrostatic pressure (HHP), pulse-electric field (PEF), ultrasound-assisted extraction (UAE), etc.) and their combinative effect (integrated UAE + HPPE, integrated PEF + enzyme-assisted extraction, etc.) could improve polyphenolic extraction. Hence, this article comprehensively reviewed the mechanisms, applications, drawbacks, and safety assessment of emerging NTE technologies and their combinative effects in the last 5 years, emphasizing their efficacy in improving agro-byproduct polyphenols' extraction. According to the review, incorporating cutting-edge NTE might promote the extraction ofmore phenolic extractfrom agro-byproducts due to numerous benefits,such as increased extractability,preserved thermo-sensitive phenolics, and low energy consumption. The next five years should investigate combined novel NTE technologies as they increase extractability. Besides, more research must be done on extracting free and bound phenolics, phenolic acids, flavonoids, and lignans from agro by-products. Finally, the safety of the extraction technology on the polyphenolic extract needs a lot of studies (in vivo and in vitro), and their mechanisms need to be explored.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America; Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America; Kumasi Cheshire Home, Off Edwenase Road, Kumasi, Ghana.
| | - Kerry Clark
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
3
|
Martín-Diana AB, Tomé-Sánchez I, García-Casas MJ, Martínez-Villaluenga C, Frías J, Rico D. A Novel Strategy to Produce a Soluble and Bioactive Wheat Bran Ingredient Rich in Ferulic Acid. Antioxidants (Basel) 2021; 10:antiox10060969. [PMID: 34208721 PMCID: PMC8234745 DOI: 10.3390/antiox10060969] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Wheat bran (WB) is a byproduct from the milling industry that contains bioactive compounds beneficial to human health. The aim of this work was on the one hand, increasing extractability of antioxidant and anti-inflammatory compounds (specifically ferulic acid, FA), through enzymatic hydrolysis combined with hydrothermal treatment (HT) and high hydrostatic pressure (HHP). On the other hand, enhancing the stability of final ingredient applying spray-drying (SPD) and microencapsulation (MEC). The use of HT increased FA, total phenolics (TP), and antioxidant capacity (AC) in WB hydrolysates, regardless the HT duration. However, the HT tested (30 min, HT30) produced a loss in anti-inflammatory activity (AIA). The combination of HT (15 min, HT15) with HHP increased AIA of the WB. SPD enhanced the TP yield in WB with no significant effect of inlet temperature (up to 140 °C) on phenolic profile mainly composed of trans-FA and smaller amounts of cis-FA and apigenin diglucosides. SPD caused a temperature-dependent increase in AC (160 °C > 140 °C > 130 °C). SPD inlet temperatures affected total solids yield (from 22 to 36%), with the highest values at 140 °C. The use of HHP in combination with HT resulted in >2-fold increase in total solids yield.
Collapse
Affiliation(s)
- Ana Belén Martín-Diana
- Agricultural Technological Institute of Castile and Leon (ITACyL), Government of Castile and Leon, Ctra. de Burgos Km. 119, Finca Zamadueñas, 47071 Valladolid, Spain; (M.J.G.-C.); (D.R.)
- Correspondence: ; Tel.: +34-983-41-0366
| | - Irene Tomé-Sánchez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain; (I.T.-S.); (C.M.-V.); (J.F.)
| | - María Jesús García-Casas
- Agricultural Technological Institute of Castile and Leon (ITACyL), Government of Castile and Leon, Ctra. de Burgos Km. 119, Finca Zamadueñas, 47071 Valladolid, Spain; (M.J.G.-C.); (D.R.)
| | - Cristina Martínez-Villaluenga
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain; (I.T.-S.); (C.M.-V.); (J.F.)
| | - Juana Frías
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain; (I.T.-S.); (C.M.-V.); (J.F.)
| | - Daniel Rico
- Agricultural Technological Institute of Castile and Leon (ITACyL), Government of Castile and Leon, Ctra. de Burgos Km. 119, Finca Zamadueñas, 47071 Valladolid, Spain; (M.J.G.-C.); (D.R.)
| |
Collapse
|
4
|
Haldar D, Purkait MK. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. CHEMOSPHERE 2021; 264:128523. [PMID: 33039689 DOI: 10.1016/j.chemosphere.2020.128523] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
The process of pretreatment is considered as an indispensable unit operation in the field of lignocellulosic conversion. The traditional pretreatment operations of lignocellulosic biomass are observed as inefficient to meet the demand for an industrial adaptation. In view of that, numerous investigations are reported on various conventional pretreatment methods but very limited information's are available on the advanced technologies. The present review article provides an exclusive discussion on various emerging and environment-friendly pretreatment methods applied on a number of different feedstock materials. Further, an insight on the reaction mechanism involved with each of the technologies such as microwave, ultrasound, deep eutectic solvent, irradiation, and high force assisted pretreatment methods are elucidated for an effective valorization of lignocellulosic biomass. Hence, in a single article, the readers of this paper will get to know all important aspects of the emerging pretreatment techniques of lignocellulosic biomass including the advancements, and the mechanistic insight which will be highly beneficial towards the selection of an efficient pretreatment method for large scale of commercial implementation in a lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Dibyajyoti Haldar
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Mihir Kumar Purkait
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
5
|
Combination of enzyme-assisted extraction and high hydrostatic pressure for phenolic compounds recovery from grape pomace. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110128] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Lau T, Harbourne N, Oruña-Concha MJ. Optimization of enzyme-assisted extraction of ferulic acid from sweet corn cob by response surface methodology. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1479-1485. [PMID: 31756272 DOI: 10.1002/jsfa.10155] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sweet corn cob (SCC), an agricultural by-product of the corn-processing industry, contains more than 80% insoluble bound ferulic acid (FA). Extraction of these bound phenolics can be achieved through chemical or enzymatic hydrolysis; however, the shift towards greener chemistry has raised awareness about the use of enzymatic hydrolysis. In the present study, the ability of ferulic acid esterase (FAE) and xylanase (XY) to catalyze the hydrolysis of FA from SCC was investigated. Response surface methodology (RSM), based on a five-level, four-factor central composite rotatable design (CCRD), was used to establish the optimum conditions for enzymatic hydrolysis of FA from SCC. Sweet corn cob was treated with a combination of FAE and XY at various concentrations (FAE: 0.00 to 0.04 U/g; XY: 0.00 to 18 093.5 U/g), temperatures (45 to 65 °C), and pH levels (pH 4.5 to 6.5). RESULTS The optimum extraction conditions predicted by the model were: FAE concentration of 0.02 U/g, XY concentration of 3475.3 U/g, extraction pH of 4.5, and an extraction temperature of 45 °C. CONCLUSION Under these conditions, the experimental yield of FA was 1.69 ± 0.02 g kg-1 of SCC, which is in agreement with the value predicted by the model. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tiffany Lau
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Niamh Harbourne
- UCD Institute of Food and Health, School of Agricultural and Food Science, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
7
|
Isolation, identification and characterization of soil bacteria for the production of ferulic acid through co-culture fermentation using banana stem waste. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
8
|
Lau T, Harbourne N, Oruña‐Concha MJ. Valorisation of sweet corn (
Zea mays
) cob by extraction of valuable compounds. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Tiffany Lau
- Department of Food and Nutritional Sciences University of Reading Whiteknights Reading Berkshire RG6 6AP UK
| | - Niamh Harbourne
- Institute of Food and Health School of Agricultural and Food Science University College Dublin Belfield, Dublin 4 Ireland
| | - Maria Jose Oruña‐Concha
- Department of Food and Nutritional Sciences University of Reading Whiteknights Reading Berkshire RG6 6AP UK
| |
Collapse
|