1
|
Khan AU, Shahzad M, Mushtaq A, Naseer MM. Green and sustainable synthesis of chiral alcohols: the role of Daucus carota as a biocatalyst in organic chemistry. RSC Adv 2025; 15:11863-11880. [PMID: 40236574 PMCID: PMC11999056 DOI: 10.1039/d5ra00901d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025] Open
Abstract
Chiral alcohols are essential intermediates in pharmaceuticals, agrochemicals, and advanced materials. Conventional asymmetric reduction of ketones relies on costly metal catalysts with significant environmental impact. Biocatalysis, particularly whole-cell systems, offers a sustainable alternative, providing high regio- and stereoselectivity under mild conditions. Daucus carota (carrot) roots serve as a promising biocatalyst due to their broad substrate compatibility and natural cofactor recycling ability, reducing reliance on toxic reagents and energy-intensive processes, making them both environmentally sustainable and economically viable. This review highlights the potential of D. carota for chiral alcohol synthesis while addressing challenges such as long reaction times, high biocatalyst requirements, and substrate limitations. Ongoing research focuses on optimizing reaction conditions, testing different carrot varieties, and incorporating additives to enhance efficiency and expand applicability.
Collapse
Affiliation(s)
- Azmat Ullah Khan
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Shahzad
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | |
Collapse
|
2
|
Machado NV, Omori ÁT. Enantioselective reduction of heterocyclic ketones with low level of asymmetry using carrots. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1879795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Naira Vieira Machado
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Álvaro Takeo Omori
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| |
Collapse
|
3
|
Časaitė V, Sadauskas M, Vaitekūnas J, Gasparavičiūtė R, Meškienė R, Skikaitė I, Sakalauskas M, Jakubovska J, Tauraitė D, Meškys R. Engineering of a chromogenic enzyme screening system based on an auxiliary indole-3-carboxylic acid monooxygenase. Microbiologyopen 2019; 8:e00795. [PMID: 30666828 PMCID: PMC6692525 DOI: 10.1002/mbo3.795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/24/2022] Open
Abstract
Here, we present a proof‐of‐principle for a new high‐throughput functional screening of metagenomic libraries for the selection of enzymes with different activities, predetermined by the substrate being used. By this approach, a total of 21 enzyme‐coding genes were selected, including members of xanthine dehydrogenase, aldehyde dehydrogenase (ALDH), and amidohydrolase families. The screening system is based on a pro‐chromogenic substrate, which is transformed by the target enzyme to indole‐3‐carboxylic acid. The later compound is converted to indoxyl by a newly identified indole‐3‐carboxylate monooxygenase (Icm). Due to the spontaneous oxidation of indoxyl to indigo, the target enzyme‐producing colonies turn blue. Two types of pro‐chromogenic substrates have been tested. Indole‐3‐carboxaldehydes and the amides of indole‐3‐carboxylic acid have been applied as substrates for screening of the ALDHs and amidohydrolases, respectively. Both plate assays described here are rapid, convenient, easy to perform, and adaptable for the screening of a large number of samples both in Escherichia coli and Rhodococcus sp. In addition, the fine‐tuning of the pro‐chromogenic substrate allows screening enzymes with the desired substrate specificity.
Collapse
Affiliation(s)
- Vida Časaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mikas Sadauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rita Meškienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Izabelė Skikaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Sakalauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jevgenija Jakubovska
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|