1
|
Brytan W, Shortall K, Duarte F, Soulimane T, Padrela L. Contribution of a C-Terminal Extension to the Substrate Affinity and Oligomeric Stability of Aldehyde Dehydrogenase from Thermus thermophilus HB27. Biochemistry 2024; 63:1075-1088. [PMID: 38602394 PMCID: PMC11080044 DOI: 10.1021/acs.biochem.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Aldehyde dehydrogenase enzymes (ALDHs) are widely studied for their roles in disease propagation and cell metabolism. Their use in biocatalysis applications, for the conversion of aldehydes to carboxylic acids, has also been recognized. Understanding the structural features and functions of both prokaryotic and eukaryotic ALDHs is key to uncovering novel applications of the enzyme and probing its role in disease propagation. The thermostable enzyme ALDHTt originating fromThermus thermophilus, strain HB27, possesses a unique extension of its C-terminus, which has been evolutionarily excluded from mesophilic counterparts and other thermophilic enzymes in the same genus. In this work, the thermophilic adaptation is studied by the expression and optimized purification of mutant ALDHTt-508, with a 22-amino acid truncation of the C-terminus. The mutant shows increased activity throughout production compared to native ALDHTt, indicating an opening of the active site upon C-terminus truncation and giving rationale into the evolutionary exclusion of the C-terminal extension from similar thermophilic and mesophilic ALDH proteins. Additionally, the C-terminus is shown to play a role in controlling substrate specificity of native ALDH, particularly in excluding catalysis of certain large and certain aromatic ortho-substituted aldehydes, as well as modulating the protein's pH tolerance by increasing surface charge. Dynamic light scattering and size-exclusion HPLC methods are used to show the role of the C-terminus in ALDHTt oligomeric stability at the cost of catalytic efficiency. Studying the aggregation rate of ALDHTt with and without a C-terminal extension leads to the conclusion that ALDHTt follows a monomolecular reaction aggregation mechanism.
Collapse
Affiliation(s)
- Wiktoria Brytan
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
| | - Kim Shortall
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
| | - Francisco Duarte
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
| | - Tewfik Soulimane
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
- SSPC
− The Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick V94 T9PX,Ireland
| | - Luis Padrela
- Department
of Chemical Sciences, Bernal Institute,
University of Limerick, Limerick V94 T9PX, Ireland
- SSPC
− The Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick V94 T9PX,Ireland
| |
Collapse
|
2
|
Wang N, Dong J, Li X, Svensson B, Jin Z, Bai Y. N1019D Mutant of Limosilactobacillus reuteri 121 4,6-α-Glucanotransferase GtfB Significantly Improved Catalytic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6509-6518. [PMID: 38488047 DOI: 10.1021/acs.jafc.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Limosilactobacillus reuteri 121 4,6-α-glucanotransferase GtfB (Lr 121 GtfB), belonging to glycoside hydrolase family 70 (GH70), synthesizes linear isomalto/malto polysaccharides having (α1→6) linkages attached to the nonreducing ends of (α1→4) linked maltose oligosaccharide segments using starch or maltodextrin as a substrate. Since Lr 121 GtfB has low catalytic activity and efficiency, it leads to substrate regeneration and reduced substrate utilization. In this study, we superimposed the crystal structure of Lr 121 GtfB-ΔNΔV with that of L. reuteri NCC 2613 GtfB-ΔNΔV (Lr 2613 GtfB-ΔNΔV) to identify the acceptor binding subsites +1 to +3 and constructed five single-residue mutants and a random mutagenesis of N1019. Compared with the wild-type, N1019D Lr 121 GtfB-ΔN did not alter the product specificity, increased the catalytic activity and efficiency by 420 and 590%, respectively, and maintained >80% relative activity in the pH 3.5-6.5 interval. The findings will contribute to the industrial application of Lr 121 GtfB and provide new solutions for starch synthesis of higher value derivatives.
Collapse
Affiliation(s)
- Nana Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingjing Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Kaptan Usul S, Binay B, Soydan AM, Aslan A. A newly synthesized magnetic nanoparticle coated with glycidyl methacrylate monomer and 1,2,4-Triazole: Immobilization of α-Amylase from Bacillus licheniformis for more reuse, stability, and activity in the presence of H 2O 2. Bioorg Chem 2024; 143:107068. [PMID: 38181659 DOI: 10.1016/j.bioorg.2023.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024]
Abstract
α-Amylase is a secretory enzyme commonly found in nature. The α-Amylase enzyme catalyzes the hydrolysis of α-D-(1,4)-glucosidic bonds in starch, glycogen, and polysaccharides. The chemical characterization of the composite carrier and the immobilized enzyme was performed, and the accuracy of the immobilization was confirmed by FTIR, SEM, and EDS analyses. The X-ray diffraction (XRD) analysis indicates that the magnetic nanoparticle retained its magnetic properties following the modification process. Based on the Thermogravimetric Analysis (TGA) outcomes, it was evident that the structural integrity of the FPT nanocomposite remained unchanged at 200°C. The optimal pH was determined to be 5.5, and no alteration was observed following the immobilization process. Purified α-amylases usually lose their activity rapidly above 50°C. In this study, Bacillus licheniformis α-Amylase enzyme was covalently immobilized on the newly synthesized magnetic composite carrier having more azole functional group. For novelty-designed immobilized enzymes, while there is no change in the pH and optimum operating temperature of the enzyme with immobilization, two essential advantages are provided to reduce enzyme costs: the storage stability and reusability are increased. Furthermore, our immobilization technique enhanced enzyme stability when comparing our immobilized enzyme with the reference enzyme in industrial applications. The activity of the immobilized enzyme was higher in presence of 1-3% H2O2.
Collapse
Affiliation(s)
- Sedef Kaptan Usul
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey; BAUZYME Biotechnology Co., Gebze Technical University Technopark, Gebze, 41400 Kocaeli, Turkey.
| | - Ali Murat Soydan
- Institute of Energy Technologies, Gebze Technical University, Kocaeli, Turkey.
| | - Ayşe Aslan
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey; Institute of Energy Technologies, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
4
|
Ashok PP, Dasgupta D, Ray A, Suman SK. Challenges and prospects of microbial α-amylases for industrial application: a review. World J Microbiol Biotechnol 2023; 40:44. [PMID: 38114825 DOI: 10.1007/s11274-023-03821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
α-Amylases are essential biocatalysts representing a billion-dollar market with significant long-term global demand. They have varied applications ranging from detergent, textile, and food sectors such as bakery to, more recently, biofuel industries. Microbial α-amylases have distinct advantages over their plant and animal counterparts owing to generally good activities and better stability at temperature and pH extremes. With the scope of applications expanding, the need for new and improved α-amylases is ever-growing. However, scaling up microbial α-amylase technology from the laboratory to industry for practical applications is impeded by several issues, ranging from mass transfer limitations, low enzyme yields, and energy-intensive product recovery that adds to high production costs. This review highlights the major challenges and prospects for the production of microbial α-amylases, considering the various avenues of industrial bioprocessing such as culture-independent approaches, nutrient optimization, bioreactor operations with design improvements, and product down-streaming approaches towards developing efficient α-amylases with high activity and recyclability. Since the sequence and structure of the enzyme play a crucial role in modulating its functional properties, we have also tried to analyze the structural composition of microbial α-amylase as a guide to its thermodynamic properties to identify the areas that can be targeted for enhancing the catalytic activity and thermostability of the enzyme through varied immobilization or selective enzyme engineering approaches. Also, the utilization of inexpensive and renewable substrates for enzyme production to isolate α-amylases with non-conventional applications has been briefly discussed.
Collapse
Affiliation(s)
- Patel Pratima Ashok
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Diptarka Dasgupta
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Anjan Ray
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil K Suman
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Zhu M, Zhai W, Song R, Lin L, Wei W, Wei D. Enhanced Thermostability of Geobacillus stearothermophilus α-Amylase by Rational Design of Disulfide Bond and Application in Corn Starch Liquefaction and Bread Quality Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18928-18942. [PMID: 38053503 DOI: 10.1021/acs.jafc.3c06761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
α-Amylase (EC 3.2.1.1) from Geobacillus stearothermophilus (generally recognized as safe) exhibited thermal inactivation, hampering its further application in starch-based industries. To address this, we performed structural analyses based on molecular dynamics targeting the flexible regions of α-amylase. Subsequently, we rationally designed a thermostable mutant, AmyS1, by introducing disulfide bonds to stabilize the flexible regions. AmyS1 showed excellent thermostability without any stability-activity trade-off, giving a 40-fold longer T1/2 (1359 min) at 90 °C. Thermostability mechanism analysis revealed that the introduction of disulfide bonds in AmyS1 refined weak spots and reconfigured the protein's force network. Moreover, AmyS1 exhibited improved pH compatibility and enhanced corn starch liquefaction at 100 °C with a 5.1-fold increased product concentration. Baking tests confirmed that AmyS1 enhanced bread quality and extended the shelf life. Therefore, mutant AmyS1 is a robust candidate for the starch-based industry.
Collapse
Affiliation(s)
- Mengyu Zhu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxin Zhai
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Runfei Song
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Lin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai 200241, China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Gu Q, Lu Y, Zhou J, Yang W, Wang K, Liu X, Yu X. Enhancement of catalytic performance of alginate lyase through combinational site-directed mutagenesis. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Li SF, Cheng F, Wang YJ, Zheng YG. Strategies for tailoring pH performances of glycoside hydrolases. Crit Rev Biotechnol 2023; 43:121-141. [PMID: 34865578 DOI: 10.1080/07388551.2021.2004084] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glycoside hydrolases (GHs) exhibit high activity and stability under harsh conditions, such as high temperatures and extreme pHs, given their wide use in industrial biotechnology. However, strategies for improving the acidophilic and alkalophilic adaptations of GHs are poorly summarized due to the complexity of the mechanisms of these adaptations. This review not only highlights the adaptation mechanisms of acidophilic and alkalophilic GHs under extreme pH conditions, but also summarizes the recent advances in engineering the pH performances of GHs with a focus on four strategies of protein engineering, enzyme immobilization, chemical modification, and medium engineering (additives). The examples described here summarize the methods used in modulating the pH performances of GHs and indicate that methods integrated in different protein engineering techniques or methods are efficient to generate industrial biocatalysts with the desired pH performance and other adapted enzyme properties.
Collapse
Affiliation(s)
- Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
8
|
Li J, Gu X, Zhang Q, Fu L, Tan J, Zhao L. Biochemical Characterization of a Carrageenase, Car1383, Derived From Associated Bacteria of Antarctic Macroalgae. Front Microbiol 2022; 13:851182. [PMID: 35432236 PMCID: PMC9009511 DOI: 10.3389/fmicb.2022.851182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
A carrageenase gene, car1383, was obtained from the metagenome of Antarctic macroalgae-associated bacteria. The amino acid sequence of its product showed up to 33% similarity with other carrageenases and contained a GH16-family motif. The recombinant Car1383 was heterologously expressed in Eschericia coli and exhibited maximal activity at 50°C and pH 6.0, with a Km of 6.51 mg/ml and a Vmax of 55.77 U/mg. Its activity was enhanced by some cations (Na+, K+, and Fe2+), but inhibited or inactivated by others (Sr2+, Ca2+, Ni2+, Ba2+, Mn2+, Cu2+, Fe3+, and Mg2+). Car1383 degraded carrageenan into neocarrabiose and neocarratetraose. Site-directed mutagenesis indicated that putative active sites, E190 and E195, conserved sites, W183 and G255, play important roles in Car1383 activity. This study provides a new candidate for the industrial preparation of bioactive algal oligosaccharides.
Collapse
Affiliation(s)
- Jiang Li
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- *Correspondence: Jiang Li,
| | - Xiaoqian Gu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qian Zhang
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Liping Fu
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jiaojiao Tan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Luying Zhao
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| |
Collapse
|
9
|
Silva-Salinas A, Rodríguez-Delgado M, Gómez-Treviño J, López-Chuken U, Olvera-Carranza C, Blanco-Gámez EA. Novel Thermotolerant Amylase from Bacillus licheniformis Strain LB04: Purification, Characterization and Agar-Agarose. Microorganisms 2021; 9:microorganisms9091857. [PMID: 34576752 PMCID: PMC8470300 DOI: 10.3390/microorganisms9091857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/17/2023] Open
Abstract
This study analyzed the thermostability and effect of calcium ions on the enzymatic activity of α-amylase produced by Bacillus licheniformis strain LB04 isolated from Espinazo Hot springs in Nuevo Leon, Mexico. The enzyme was immobilized by entrapment on agar-agarose beads, with an entrapment yield of 19.9%. The identification of the bacteria was carried out using 16s rDNA sequencing. The enzyme was purified through ion exchange chromatography (IEX) in a DEAE-Sephadex column, revealing a protein with a molecular weight of ≈130 kDa. The enzyme was stable at pH 3.0 and heat stable up to 80 °C. However, the optimum conditions were reached at 65 °C and pH 3.0, with a specific activity of 1851.7 U mg−1 ± 1.3. The agar-agarose immobilized α-amylase had a hydrolytic activity nearly 25% higher when compared to the free enzyme. This study provides critical information for the understanding of the enzymatic profile of B. licheniformis strain LB04 and the potential application of the microorganisms at an industrial level, specifically in the food industry.
Collapse
Affiliation(s)
- Anaid Silva-Salinas
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parquede Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca C.P. 66629, Nuevo León, Mexico; (A.S.-S.); (M.R.-D.); (U.L.-C.)
| | - Melissa Rodríguez-Delgado
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parquede Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca C.P. 66629, Nuevo León, Mexico; (A.S.-S.); (M.R.-D.); (U.L.-C.)
| | - Jesús Gómez-Treviño
- Laboratorio de Biología Molecular, CELAES, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico;
| | - Ulrico López-Chuken
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parquede Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca C.P. 66629, Nuevo León, Mexico; (A.S.-S.); (M.R.-D.); (U.L.-C.)
| | - Clarita Olvera-Carranza
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, Cuernavaca C.P. 62210, Morelos, Mexico;
| | - Edgar Allan Blanco-Gámez
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parquede Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca C.P. 66629, Nuevo León, Mexico; (A.S.-S.); (M.R.-D.); (U.L.-C.)
- Correspondence:
| |
Collapse
|
10
|
Lim SJ, Oslan SN. Native to designed: microbial -amylases for industrial applications. PeerJ 2021; 9:e11315. [PMID: 34046253 PMCID: PMC8139272 DOI: 10.7717/peerj.11315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background -amylases catalyze the endo-hydrolysis of -1,4-D-glycosidic bonds in starch into smaller moieties. While industrial processes are usually performed at harsh conditions, -amylases from mainly the bacteria, fungi and yeasts are preferred for their stabilities (thermal, pH and oxidative) and specificities (substrate and product). Microbial -amylases can be purified and characterized for industrial applications. While exploring novel enzymes with these properties in the nature is time-costly, the advancements in protein engineering techniques including rational design, directed evolution and others have privileged their modifications to exhibit industrially ideal traits. However, the commentary on the strategies and preferably mutated residues are lacking, hindering the design of new mutants especially for enhanced substrate specificity and oxidative stability. Thus, our review ensures wider accessibility of the previously reported experimental findings to facilitate the future engineering work. Survey methodology and objectives A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries. Conclusions Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Molecular strategies to enhance stability and catalysis of extremophile-derived α-amylase using computational biology. Extremophiles 2021; 25:221-233. [PMID: 33754213 DOI: 10.1007/s00792-021-01223-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022]
Abstract
α-Amylase is the most significant glycoside hydrolase having applications in various industries. It cleaves the α,1-4 glucosidic linkages of polysaccharides like starch, glycogen to yield a small polymer of glucose in α-anomeric configuration. α-Amylase is produced by all the three domains of life but microorganisms are preferred sources for industrial-scale production due to several advantages. Enormous studies and research have been done in this field in the past few decades. Still, it is requisite to work on enzyme stability and catalysis, as it loses its functionality in extreme. As the enzyme loses its structural and catalytic property under extreme environmental conditions, it is mandatory to confer some potential strategies for enhancing enzyme behaviour in such conditions. This limitation of an enzyme can be overcome up to some extent by extremophiles. They serve as an excellent source of α-amylase with outstanding features. This review is an attempt to encapsulate some structure-based strategies for improving enzyme behaviour thereby enabling researchers to selectively amend any of the strategies as per requirement during upstream and downstream processing for higher enzyme yield and stability. Thus, it will provide some cutting-edge strategies for tailoring α-amylase producing organism and enzyme with the help of several computational biology tools.
Collapse
|
12
|
Paul JS, Gupta N, Beliya E, Tiwari S, Jadhav SK. Aspects and Recent Trends in Microbial α-Amylase: a Review. Appl Biochem Biotechnol 2021; 193:2649-2698. [PMID: 33715051 DOI: 10.1007/s12010-021-03546-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
α-Amylases are the oldest and versatile starch hydrolysing enzymes which can replace chemical hydrolysis of starch in industries. It cleaves the α-(1,4)-D-glucosidic linkage of starch and other related polysaccharides to yield simple sugars like glucose, maltose and limit dextrin. α-Amylase covers about 30% shares of the total enzyme market. On account of their superior features, α-amylase is the most widely used among all the existing amylases for hydrolysis of polysaccharides. Endo-acting α-amylase of glycoside hydrolase family 13 is an extensively used biocatalyst and has various biotechnological applications like in starch processing, detergent, textile, paper and pharmaceutical industries. Apart from these, it has some novel applications including polymeric material for drug delivery, bioremediating agent, biodemulsifier and biofilm inhibitor. The present review will accomplish the research gap by providing the unexplored aspects of microbial α-amylase. It will allow the readers to know about the works that have already been done and the latest trends in this field. The manuscript has covered the latest immobilization techniques and the site-directed mutagenesis approaches which are readily being performed to confer the desirable property in wild-type α-amylases. Furthermore, it will state the inadequacies and the numerous obstacles coming in the way of its production during upstream and downstream steps and will also suggest some measures to obtain stable and industrial-grade α-amylase.
Collapse
Affiliation(s)
- Jai Shankar Paul
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Nisha Gupta
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Esmil Beliya
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.,Department of Botany, Govt. College, Bichhua, Chhindwara, MP, 480111, India
| | - Shubhra Tiwari
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.
| |
Collapse
|
13
|
Zhang J, Xu X, Li X, Chen X, Zhou C, Liu Y, Li Y, Lu F. Reducing the cell lysis to enhance yield of acid-stable alpha amylase by deletion of multiple peptidoglycan hydrolase-related genes in Bacillus amyloliquefaciens. Int J Biol Macromol 2020; 167:777-786. [PMID: 33278447 DOI: 10.1016/j.ijbiomac.2020.11.193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
Bacillus amyloliquefaciens is a major industrial host for extracellular protein production, with great potential in the enzyme industry. However, the strain has accelerated the autolysis drawback in the process of secreting extracellular enzymes, which can significantly lower the density of cells and decrease the product yield. To identify target genes, we employed comparative transcriptome sequencing and KEGG analysis to indicate the increased expression of peptidoglycan hydrolase-regulated genes from the exponential phase to the apoptotic phase of growth; this was further confirmed by quantitative RT-PCR. By deleting lytD, lytE, and sigD genes, cell lysis was reduced and the production of acid-stable Bacillus licheniformis alpha-amylase was enhanced. After 36 h of culture, multiple deletion mutant BA ΔSDE had significantly more viable cells compared to the control strain BA Δupp, and flow cytometry analysis indicated that 48.43% and 64.03% of the cells were lysed in cultures of BA ΔSDE and BA Δupp, respectively. In a 2-L fed-batch fermenter, viable cell number of the triple deletion mutant BA ΔSDE increased by 2.79 Log/cfu/mL, and the activity of acid-stable alpha-amylase increased by 48.4%, compared to BA Δupp. Systematic multiple peptidoglycan hydrolases deletion relieved the autolysis and increased the production of industrial enzymes, and provided a useful strategy for guiding efforts to manipulate the genomes of other B. amyloliquefaciens used for chassis host.
Collapse
Affiliation(s)
- Jinfang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaojian Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xinyue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xuejia Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Cuixia Zhou
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
14
|
Pinto ÉSM, Dorn M, Feltes BC. The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes. CHEMOSPHERE 2020; 250:126202. [PMID: 32092569 DOI: 10.1016/j.chemosphere.2020.126202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
As the primary source of a wide range of industrial products, the study of petroleum-derived compounds is of pivotal importance. However, the process of oil extraction and refinement is among the most environmentally hazardous practices, impacting almost all levels of the ecological chain. So far, the most appropriate strategy to overcome such an issue is through bioremediation, which revolves around the employment of different microorganisms to degrade hazardous compounds, generating less environmental impact and lower monetary costs. In this sense, a myriad of organisms and enzymes are considered possible candidates for the bioremediation process. Amidst the potential candidates is α-amylase, an evolutionary conserved starch-degrading enzyme. Notably, α-amylase was not only seen to degrade n-alkanes, a subclass of alkanes considered the most abundant petroleum-derived compounds but also low-density polyethylene, a dangerous pollutant produced from petroleum. Thus, due to its high conservation in both eukaryotic and prokaryotic lineages, in addition to the capability to degrade different types of hazardous compounds, the study of α-amylase becomes a rising interest. Nevertheless, there are no studies that review all biotechnological applications of α-amylase for bioremediation. In this work, we critically review the potential biotechnological applications of α-amylase, focusing on the biodegradation of petroleum-derived compounds. Evolutionary aspects are discussed, as well for all structural information and all features that could impact on the employment of this protein in the biotechnological industry, such as pH, temperature, and medium conditions. New perspectives and critical assessments are conducted regarding the application of α-amylase in the bioremediation of n-alkanes.
Collapse
Affiliation(s)
- Éderson Sales Moreira Pinto
- Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Márcio Dorn
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil; Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Bruno César Feltes
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
15
|
Damis SIR, Murad AMA, Diba Abu Bakar F, Rashid SA, Jaafar NR, Illias RM. Protein engineering of GH11 xylanase from Aspergillus fumigatus RT-1 for catalytic efficiency improvement on kenaf biomass hydrolysis. Enzyme Microb Technol 2019; 131:109383. [DOI: 10.1016/j.enzmictec.2019.109383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/30/2019] [Accepted: 07/16/2019] [Indexed: 11/15/2022]
|
16
|
HAN N, ZHANG ZK, LI YH, WANG W, BIAN LJ. Spectroscopic Analysis of Chloride Ion-induced Structural Change of Bacillus Amyloliquefaciens α-Amylase. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Rational Design of Alginate Lyase from Microbulbifer sp. Q7 to Improve Thermal Stability. Mar Drugs 2019; 17:md17060378. [PMID: 31242622 PMCID: PMC6627800 DOI: 10.3390/md17060378] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 11/25/2022] Open
Abstract
Alginate lyase degrades alginate by the β-elimination mechanism to produce oligosaccharides with special bioactivities. The low thermal stability of alginate lyase limits its industrial application. In this study, introducing the disulfide bonds while using the rational design methodology enhanced the thermal stability of alginate lyase cAlyM from Microbulbifer sp. Q7. Enzyme catalytic sites, secondary structure, spatial configuration, and molecular dynamic simulation were comprehensively analyzed. When compared with cAlyM, the mutants D102C-A300C and G103C-T113C showed an increase by 2.25 and 1.16 h, respectively, in half-life time at 45 °C, in addition to increases by 1.7 °C and 0.4 °C in the melting temperature, respectively. The enzyme-specific activity and kcat/Km values of D102C-A300C were 1.8- and 1.5-times higher than those of cAlyM, respectively. The rational design strategy that was used in this study provides a valuable method for improving the thermal stability of the alginate lyase.
Collapse
|
18
|
Directed evolution of α-amylase from Bacillus licheniformis to enhance its acid-stable performance. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00262-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Pedersen JN, Zhou Y, Guo Z, Pérez B. Genetic and chemical approaches for surface charge engineering of enzymes and their applicability in biocatalysis: A review. Biotechnol Bioeng 2019; 116:1795-1812. [DOI: 10.1002/bit.26979] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/10/2019] [Accepted: 03/28/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | - Ye Zhou
- Department of EngineeringAarhus UniversityAarhus Denmark
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life ScienceJilin UniversityChangchun China
| | - Zheng Guo
- Department of EngineeringAarhus UniversityAarhus Denmark
| | - Bianca Pérez
- AgrotechDanish Technological InstituteAarhus Denmark
| |
Collapse
|
20
|
Lee J, Xiang L, Byambabaatar S, Kim H, Jin KS, Ree M. Bacillus licheniformis α-amylase: Structural feature in a biomimetic solution and structural changes in extrinsic conditions. Int J Biol Macromol 2019; 127:286-296. [DOI: 10.1016/j.ijbiomac.2019.01.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
21
|
|