1
|
Liu P, Chen Y, Ma C, Ouyang J, Zheng Z. β-Galactosidase: a traditional enzyme given multiple roles through protein engineering. Crit Rev Food Sci Nutr 2023; 65:1306-1325. [PMID: 38108277 DOI: 10.1080/10408398.2023.2292282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
β-Galactosidases are crucial carbohydrate-active enzymes that naturally catalyze the hydrolysis of galactoside bonds in oligo- and disaccharides. These enzymes are commonly used to degrade lactose and produce low-lactose and lactose-free dairy products that are beneficial for lactose-intolerant people. β-galactosidases exhibit transgalactosylation activity, and they have been employed in the synthesis of galactose-containing compounds such as galactooligosaccharides. However, most β-galactosidases have intrinsic limitations, such as low transglycosylation efficiency, significant product inhibition effects, weak thermal stability, and a narrow substrate spectrum, which greatly hinder their applications. Enzyme engineering offers a solution for optimizing their catalytic performance. The study of the enzyme's structure paves the way toward explaining catalytic mechanisms and increasing the efficiency of enzyme engineering. In this review, the structure features of β-galactosidases from different glycosyl hydrolase families and the catalytic mechanisms are summarized in detail to offer guidance for protein engineering. The properties and applications of β-galactosidases are discussed. Additionally, the latest progress in β-galactosidase engineering and the strategies employed are highlighted. Based on the combined analysis of structure information and catalytic mechanisms, the ultimate goal of this review is to furnish a thorough direction for β-galactosidases engineering and promote their application in the food and dairy industries.
Collapse
Affiliation(s)
- Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yuehua Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Chin SY, Shahruddin S, Chua GK, Samsudin NA, Mudalip SKA, Ghazali NFS, Jemaat Z, Salleh SF, Said FM, Nadir N, Ismail NL, Ng SH. Toward Sustainable Production of Sugar-Based Alkyl Polyglycoside Surfactant─A Comprehensive Review on Synthesis Route and Downstream Processing. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Sim Yee Chin
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Sara Shahruddin
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Gek Kee Chua
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Nur Amalina Samsudin
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Siti Kholijah Abdul Mudalip
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Noor Fadhila Syahida Ghazali
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Zulkifly Jemaat
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Siti Fatihah Salleh
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Najiah Nadir
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Nur Liyana Ismail
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Su Han Ng
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| |
Collapse
|
3
|
Muñoz K, Ahumada D, Arenas F, Guerrero C, Illanes A, Vera C. Effect of product partition on the synthesis of butyl-β-D-galactoside from Aspergillus oryzae. BIORESOURCE TECHNOLOGY 2021; 340:125697. [PMID: 34358984 DOI: 10.1016/j.biortech.2021.125697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The effect of donor substrate and products partitioning on the performance of butyl-β-galactoside synthesis with Aspergillus oryzae β-galactosidase was studied. Firstly, the partition coefficient of the donor substrate (lactose) and the reaction products (glucose, galactose and butyl-β-galactoside) were determined in the aqueous and organic phases of the reaction medium. In the temperature range studied (30 to 50 °C), butyl β-galactoside was roughly 130 and 30-fold more soluble in the organic phase than lactose and the monosaccharides, respectively. Afterward, the effect of the 1-butanol/ aqueous phase ratio (α) on the reaction was evaluated in the range from 0.25 to 4. Results show that higher values of α reduce the incidence of secondary hydrolysis by favoring the extraction of butyl-β-galactoside into the organic phase where it is not hydrolyzed, leading to higher yields. Also, major interfacial properties for butyl-β-galactoside were determined at 25 °C.
Collapse
Affiliation(s)
- Kevin Muñoz
- Biology Department, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Diego Ahumada
- Biology Department, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Felipe Arenas
- Biology Department, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso (PUCV). Av, Brasil 2085, Valparaíso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso (PUCV). Av, Brasil 2085, Valparaíso, Chile
| | - Carlos Vera
- Biology Department, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile.
| |
Collapse
|
4
|
Improvement of Fucosylated Oligosaccharides Synthesis by α-L-Fucosidase from Thermotoga maritima in Water-Organic Cosolvent Reaction System. Appl Biochem Biotechnol 2021; 193:3553-3569. [PMID: 34312785 DOI: 10.1007/s12010-021-03628-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023]
Abstract
The effects of water activity (aw), pH, and temperature on transglycosylation activity of α-L-fucosidase from Thermotoga maritima in the synthesis of fucosylated oligosaccharides were evaluated using different water-organic cosolvent reaction systems. The optimum conditions of transglycosylation reaction were the pH range between 7 and 10 and temperature 90-95 °C. The addition of organic cosolvent decreased α-L-fucosidase transglycosylation activity in the following order: acetone > dimethyl sulfoxide (DMSO) > acetonitrile (0.51 > 0.42 > 0.18 mM/h). However, the presence of DMSO and acetone enhanced enzyme-catalyzed transglycosylation over hydrolysis as demonstrated by the obtained transglycosylation/hydrolysis rate (rT/H) values of 1.21 and 1.43, respectively. The lowest rT/H was calculated for acetonitrile (0.59), though all cosolvents tested improved the transglycosylation rate in comparison to a control assay (0.39). Overall, the study allowed the production of fucosylated oligosaccharides in water-organic cosolvent reaction media using α-L-fucosidase from T. maritima as biocatalyst.
Collapse
|
5
|
Andjelković U, Gudelj I, Klarić T, Hinneburg H, Vinković M, Wittine K, Dovezenski N, Vikić-Topić D, Lauc G, Vujčić Z, Josić D. Increased yield of enzymatic synthesis by chromatographic selection of different N-glycoforms of yeast invertase. Electrophoresis 2020; 42:2626-2636. [PMID: 33026663 DOI: 10.1002/elps.202000092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022]
Abstract
Invertases are glycosidases applied for synthesis of alkyl glycosides that are important and effective surfactants. Stability of invertases in the environment with increased content of organic solvent is crucial for increase of productivity of glycosidases. Their stability is significantly influenced by N-glycosylation. However, yeast N-glycosylation pathways may synthesize plethora of N-glycan structures. A total natural crude mixture of invertase glycoforms (EINV) extracted from Saccharomyces cerevisiae was subfractionated by anion-exchange chromatography on industrial monolithic supports to obtain different glycoforms (EINV1-EINV3). Separated glycoforms exhibited different stabilities in water-alcohol solutions that are in direct correlation with the amount of phosphate bound to N-glycans. Observed differences in stability of different invertase glycoforms were used to improve productivity of methyl β-d-fructofuranoside (MF) synthesis. The efficiency and yield of MF synthesis were improved more than 50% when the most stabile glycoform bearing the lowest amount of phosphorylated N-glycans is selected and utilized. These data underline the importance of analysis of glycan structures attached to glycoproteins, demonstrate different impact of N-glycans on the surface charge and enzyme stability in regard to particular reaction environment, and provide a platform for improvement of yield of industrial enzymatic synthesis by chromatographic selection of glycoforms on monolithic supports.
Collapse
Affiliation(s)
- Uroš Andjelković
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy-National Institute of the Republic of Serbia, Belgrade, Serbia.,Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Thomas Klarić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Hannes Hinneburg
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Karlo Wittine
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Nebojša Dovezenski
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Dražen Vikić-Topić
- NMR Centre, Ruđer Bošković Institute, Zagreb, Croatia.,Department of Natural and Health Sciences, Juraj Dobrila University of Pula, Pula, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Zoran Vujčić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
6
|
Ahumada D, Arenas F, Martínez-Gómez F, Guerrero C, Illanes A, Vera C. Synthesis of Butyl-β-D-Galactoside in the Ternary System: Acetone/1-Butanol/Aqueous Solution. Front Bioeng Biotechnol 2020; 8:859. [PMID: 32793582 PMCID: PMC7390968 DOI: 10.3389/fbioe.2020.00859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/03/2020] [Indexed: 01/31/2023] Open
Abstract
The enzymatic synthesis of short-tailed alkyl glucosides is generally carried out in an aqueous-organic biphasic reaction medium with a rather low fatty alcohol concentration in the aqueous phase (where the synthesis occurs). Thus, hydrolytic reactions have a significant impact on the synthesis performance. Given this background, the use of acetone as cosolvent was studied for the synthesis of butyl-β-galactoside with Aspergillus oryzae β-galactosidase. The liquid-liquid equilibrium of the reaction mixture components (acetone/1-butanol/aqueous solution) was determined and the single- and two-phase regions were defined at 30, 40, and 50°C. It was observed that the liquid-liquid equilibrium of the ternary system acetone/1-butanol/water differs significantly from the one obtained using an aqueous solution (50 mM McIlvaine buffer pH 4.5; 5 g L-1) instead of water. This is mainly because of the salting-out effect of the buffer; nevertheless, the presence of lactose also altered the equilibrium. Having this in mind, the effects of temperature (30 and 50°C) and reaction mixture composition were assessed. Three general conditions were evaluated: single-phase ternary system (30% acetone), two-phase ternary system (10% acetone) and two-phase binary system (0% acetone). Acetone had a deleterious effect on enzyme stability at 50°C, leading to low reaction yields. However, no enzyme deactivation was detected at 30°C. Moreover, a reaction yield of 0.98 mol mol-1 was attained in the 30/50/20% (w/w) mixture of acetone/1-butanol/aqueous solution. This very high yield can be explained by the huge increase in the concentration of 1-butanol and the reduction of water activity. The synthesis was carried out using also the β-galactosidase immobilized in glyoxal-agarose and amino-glyoxal-agarose, and by aggregation and crosslinking. In the case of agarose-derived catalysts, two average particle diameters were assessed to evaluate the presence of internal mass transfer limitations. Best yield (0.88 mol mol-1) was obtained with glyoxal-agarose derivatives and the particle size had non-effect on yield. The chemical structure of butyl-β-galactoside was determined by NMR and FT-IR.
Collapse
Affiliation(s)
- Diego Ahumada
- Laboratory of Molecular Microbiology, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Arenas
- Laboratory of Molecular Microbiology, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Fabián Martínez-Gómez
- Laboratory of Molecular Microbiology, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carlos Vera
- Laboratory of Molecular Microbiology, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
7
|
Klimacek M, Sigg A, Nidetzky B. On the donor substrate dependence of group-transfer reactions by hydrolytic enzymes: Insight from kinetic analysis of sucrose phosphorylase-catalyzed transglycosylation. Biotechnol Bioeng 2020; 117:2933-2943. [PMID: 32573774 PMCID: PMC7540478 DOI: 10.1002/bit.27471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 12/30/2022]
Abstract
Chemical group-transfer reactions by hydrolytic enzymes have considerable importance in biocatalytic synthesis and are exploited broadly in commercial-scale chemical production. Mechanistically, these reactions have in common the involvement of a covalent enzyme intermediate which is formed upon enzyme reaction with the donor substrate and is subsequently intercepted by a suitable acceptor. Here, we studied the glycosylation of glycerol from sucrose by sucrose phosphorylase (SucP) to clarify a peculiar, yet generally important characteristic of this reaction: partitioning between glycosylation of glycerol and hydrolysis depends on the type and the concentration of the donor substrate used (here: sucrose, α-d-glucose 1-phosphate (G1P)). We develop a kinetic framework to analyze the effect and provide evidence that, when G1P is used as donor substrate, hydrolysis occurs not only from the β-glucosyl-enzyme intermediate (E-Glc), but additionally from a noncovalent complex of E-Glc and substrate which unlike E-Glc is unreactive to glycerol. Depending on the relative rates of hydrolysis of free and substrate-bound E-Glc, inhibition (Leuconostoc mesenteroides SucP) or apparent activation (Bifidobacterium adolescentis SucP) is observed at high donor substrate concentration. At a G1P concentration that excludes the substrate-bound E-Glc, the transfer/hydrolysis ratio changes to a value consistent with reaction exclusively through E-Glc, independent of the donor substrate used. Collectively, these results give explanation for a kinetic behavior of SucP not previously accounted for, provide essential basis for design and optimization of the synthetic reaction, and establish a theoretical framework for the analysis of kinetically analogous group-transfer reactions by hydrolytic enzymes.
Collapse
Affiliation(s)
- Mario Klimacek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Alexander Sigg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.,Austrian Centre of Industrial Biotechnology (acib), Graz, Austria
| |
Collapse
|
8
|
Vera C, Guerrero C, Aburto C, Cordova A, Illanes A. Conventional and non-conventional applications of β-galactosidases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140271. [DOI: 10.1016/j.bbapap.2019.140271] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 02/04/2023]
|
9
|
Guerrero C, Aburto C, Súarez S, Vera C, Illanes A. Improvements in the production of Aspergillus oryzae β-galactosidase crosslinked aggregates and their use in repeated-batch synthesis of lactulose. Int J Biol Macromol 2019; 142:452-462. [PMID: 31676297 DOI: 10.1016/j.ijbiomac.2019.09.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/16/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023]
Abstract
Aspergillus oryzae β-galactosidase was immobilized by aggregation and crosslinking, obtaining catalysts (CLAGs) well-endowed for lactulose synthesis. Type and concentration of the precipitating agent were determinants of immobilization yield, specific activity and thermal stability. CLAGs with specific activities of 64,007, 48,374 and 44,560 IUH g-1 were obtained using 50% v/v methanol, ethanol and propanol as precipitating agents respectively, with immobilization yields over 90%. Lactulose synthesis was conducted at 50 °C, pH 4.5, 50% w/w total sugars, 200 IUH g-1 of enzyme and fructose/lactose molar ratio of 8 in batch and repeated-batch operation. Lactulose yields were 0.19 g g-1 and 0.24 g g-1 for fructose to lactose molar ratios of 4 mol mol-1 and 8 mol mol-1 while selectivities were 3.3 mol mol-1 and 6.6 mol mol-1 respectively for CLAGs obtained by ethanol and propanol precipitation. Based on these results, both CLAGs were selected for the synthesis in repeated-batch mode. The cumulative mass of lactulose in repeated-batch was higher with CLAGs produced by ethanol and propanol precipitation than with the free enzyme. 86 and 93 repeated-batches could have been respectively performed with those CLAGs considering a catalyst replacement criterion of 50% of residual activity, as determined by simulation.
Collapse
Affiliation(s)
- Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| | - Carla Aburto
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Sebastián Súarez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| |
Collapse
|
10
|
Guzmán-Rodríguez F, Alatorre-Santamaría S, Gómez-Ruiz L, Rodríguez-Serrano G, García-Garibay M, Cruz-Guerrero A. Improvement of the transfucosylation activity of α-L-fucosidase from Thermotoga maritima for the synthesis of fucosylated oligosaccharides in the presence of calcium and sodium. Extremophiles 2018; 22:889-894. [PMID: 30088105 DOI: 10.1007/s00792-018-1045-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/30/2018] [Indexed: 01/18/2023]
Abstract
The influence of CaCl2 and NaCl in the hydrolytic activity and the influence of CaCl2 in the synthesis of fucosylated oligosaccharides using α-L-fucosidase from Thermotoga maritima were evaluated. The hydrolytic activity of α-L-fucosidase from Thermotoga maritima displayed a maximum increase of 67% in the presence of 0.8 M NaCl with water activity (aw) of 0.9672 and of 138% in the presence of 1.1 M CaCl2 (aw 0.9581). In addition, the hydrolytic activity was higher when using CaCl2 compared to NaCl at aw of 0.8956, 0.9581 and 0.9672. On the other hand, the effect of CaCl2 in the synthesis of fucosylated oligosaccharides using 4-nitrophenyl-fucose as donor substrate and lactose as acceptor was studied. In these reactions, the presence of 1.1 M CaCl2 favored the rate of transfucosylation, and improved the yield of synthesis duplicating and triplicating it with lactose concentrations of 58 and 146 mM, respectively. CaCl2 did not significatively affect hydrolysis rate in these reactions. The combination of the activating effect of CaCl2, the decrement in aw and lactose concentration had a synergistic effect favoring the synthesis of fucosylated oligosaccharides.
Collapse
Affiliation(s)
- Francisco Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, Iztapalapa, Mexico City, Mexico
| | - Sergio Alatorre-Santamaría
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, Iztapalapa, Mexico City, Mexico
| | - Lorena Gómez-Ruiz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, Iztapalapa, Mexico City, Mexico
| | - Gabriela Rodríguez-Serrano
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, Iztapalapa, Mexico City, Mexico
| | - Mariano García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, Iztapalapa, Mexico City, Mexico
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. Hidalgo Poniente 46, Col. La Estación, CP 52006, Lerma de Villada, Edo. de México, Mexico
| | - Alma Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, Iztapalapa, Mexico City, Mexico.
| |
Collapse
|
11
|
Guo L, Katiyo W, Lu L, Zhang X, Wang M, Yan J, Ma X, Yang R, Zou L, Zhao W. Glycyrrhetic Acid 3-O-Mono-β-d
-glucuronide (GAMG): An Innovative High-Potency Sweetener with Improved Biological Activities. Compr Rev Food Sci Food Saf 2018; 17:905-919. [DOI: 10.1111/1541-4337.12353] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/17/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Lichun Guo
- State Key Laboratory of Food Science and Technology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Wendy Katiyo
- Dept. of Food Science; Univ. of Pretoria; Hatfield 0028 South Africa
| | - Liushen Lu
- School of Biotechnology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Xuan Zhang
- State Key Laboratory of Food Science and Technology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Mingming Wang
- State Key Laboratory of Food Science and Technology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Jiai Yan
- State Key Laboratory of Food Science and Technology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Xiaoyun Ma
- School of Foreign Studies; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Long Zou
- Bunge Ingredient Innovation Center; 725 North Kinzie Avenue Bradley IL 60915 U.S.A
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| |
Collapse
|