1
|
Thompson TP, Gilmore BF. Exploring halophilic environments as a source of new antibiotics. Crit Rev Microbiol 2024; 50:341-370. [PMID: 37079280 DOI: 10.1080/1040841x.2023.2197491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/25/2023] [Indexed: 04/21/2023]
Abstract
Microbial natural products from microbes in extreme environments, including haloarchaea, and halophilic bacteria, possess a huge capacity to produce novel antibiotics. Additionally, enhanced isolation techniques and improved tools for genomic mining have expanded the efficiencies in the antibiotic discovery process. This review article provides a detailed overview of known antimicrobial compounds produced by halophiles from all three domains of life. We summarize that while halophilic bacteria, in particular actinomycetes, contribute the vast majority of these compounds the importance of understudied halophiles from other domains of life requires additional consideration. Finally, we conclude by discussing upcoming technologies- enhanced isolation and metagenomic screening, as tools that will be required to overcome the barriers to antimicrobial drug discovery. This review highlights the potential of these microbes from extreme environments, and their importance to the wider scientific community, with the hope of provoking discussion and collaborations within halophile biodiscovery. Importantly, we emphasize the importance of bioprospecting from communities of lesser-studied halophilic and halotolerant microorganisms as sources of novel therapeutically relevant chemical diversity to combat the high rediscovery rates. The complexity of halophiles will necessitate a multitude of scientific disciplines to unravel their potential and therefore this review reflects these research communities.
Collapse
Affiliation(s)
- Thomas P Thompson
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Brendan F Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
2
|
Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Moopantakath J, Imchen M, Anju VT, Busi S, Dyavaiah M, Martínez-Espinosa RM, Kumavath R. Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications. Front Microbiol 2023; 14:1113540. [PMID: 37065149 PMCID: PMC10102575 DOI: 10.3389/fmicb.2023.1113540] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Marine environments and salty inland ecosystems encompass various environmental conditions, such as extremes of temperature, salinity, pH, pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic archaea (also called haloarchaea) are a group of microorganisms requiring high salt concentrations (2-6 M NaCl) for optimal growth. Haloarchaea have different metabolic adaptations to withstand these extreme conditions. Among the adaptations, several vesicles, granules, primary and secondary metabolites are produced that are highly significant in biotechnology, such as carotenoids, halocins, enzymes, and granules of polyhydroxyalkanoates (PHAs). Among halophilic enzymes, reductases play a significant role in the textile industry and the degradation of hydrocarbon compounds. Enzymes like dehydrogenases, glycosyl hydrolases, lipases, esterases, and proteases can also be used in several industrial procedures. More recently, several studies stated that carotenoids, gas vacuoles, and liposomes produced by haloarchaea have specific applications in medicine and pharmacy. Additionally, the production of biodegradable and biocompatible polymers by haloarchaea to store carbon makes them potent candidates to be used as cell factories in the industrial production of bioplastics. Furthermore, some haloarchaeal species can synthesize nanoparticles during heavy metal detoxification, thus shedding light on a new approach to producing nanoparticles on a large scale. Recent studies also highlight that exopolysaccharides from haloarchaea can bind the SARS-CoV-2 spike protein. This review explores the potential of haloarchaea in the industry and biotechnology as cellular factories to upscale the production of diverse bioactive compounds.
Collapse
Affiliation(s)
- Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - V. T. Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
4
|
Ma YC, Gao MR, Yang H, Jiang JY, Xie W, Su WP, Zhang B, Yeong YS, Guo WY, Sui LY. Optimization of C 50 Carotenoids Production by Open Fermentation of Halorubrum sp. HRM-150. Appl Biochem Biotechnol 2023; 195:3628-3640. [PMID: 36648604 DOI: 10.1007/s12010-023-04319-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
C50 carotenoids, as unique bioactive molecules, have many biological properties, including antioxidant, anticancer, and antibacterial activity, and have a wide range of potential uses in the food, cosmetic, and biomedical industries. The majority of C50 carotenoids are produced by the sterile fermentation of halophilic archaea. This study aims to look at more cost-effective and manageable ways of producing C50 carotenoids. The basic medium, carbon source supplementation, and optimal culture conditions for Halorubrum sp. HRM-150 C50 carotenoids production by open fermentation were examined in this work. The results indicated that Halorubrum sp. HRM-150 grown in natural brine medium grew faster than artificial brine medium. The addition of glucose, sucrose, and lactose (10 g/L) enhanced both biomass and carotenoids productivity, with the highest level reaching 4.53 ± 0.32 μg/mL when glucose was added. According to the findings of orthogonal studies based on the OD600 and carotenoids productivity, the best conditions for open fermentation were salinity 20-25%, rotation speed 150-200 rpm, and pH 7.0-8.2. The up-scaled open fermentation was carried out in a 7 L medium under optimum culture conditions. At 96 h, the OD600 and carotenoids productivity were 9.86 ± 0.51 (dry weight 10.40 ± 1.27 g/L) and 7.31 ± 0.65 μg/mL (701.40 ± 21.51 μg/g dry weight, respectively). When amplified with both universal bacterial primer and archaeal primer in the open fermentation, Halorubrum remained the dominating species, indicating that contamination was kept within an acceptable level. To summarize, open fermentation of Halorubrum is a promising method for producing C50 carotenoids.
Collapse
Affiliation(s)
- Ying-Chao Ma
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin, China.,Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Mei-Rong Gao
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin, China.,Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huan Yang
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jun-Yao Jiang
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wei Xie
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wan-Ping Su
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Bo Zhang
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Yik-Sung Yeong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Wu-Yan Guo
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Li-Ying Sui
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin, China. .,Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
5
|
Verma DK, Thakur M, Singh S, Tripathy S, Gupta AK, Baranwal D, Patel AR, Shah N, Utama GL, Niamah AK, Chávez-González ML, Gallegos CF, Aguilar CN, Srivastav PP. Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101594] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Evangelista AG, Danielski GM, Corrêa JAF, Cavalari CMDA, Souza IR, Luciano FB, Macedo REFD. Carnobacterium as a bioprotective and potential probiotic culture to improve food quality, food safety, and human health - a scoping review. Crit Rev Food Sci Nutr 2022; 63:6946-6959. [PMID: 35156482 DOI: 10.1080/10408398.2022.2038079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well-known that some bacteria can promote human and animal health. Bacteria of the genus Carnobacterium, while underexplored, have demonstrated significant probiotic and bioprotective potential. In this review, the recent scientific advances in this area are discussed. There are several requirements for a strain to be considered a probiotic or bioprotective agent, including the absence of antimicrobial resistance and the ability to colonize the gastrointestinal tract. Several researchers have reported such features in Carnobacterium bacteria, especially with regard to the production of antimicrobial substances. Research into animal production has advanced, especially in the aquaculture field, wherein inhibitory activity has been demonstrated against several important pathogens (for example Vibrio), and improvement in zootechnical indexes is evident. With respect to human health-related applications, research is still in the early stages. However, excellent in vitro results against pathogens, such as Candida albicans and Pseudomonas aeruginosa, have been reported. Carnobacterium bacteria have been assessed for a variety of applications in food, including direct application to the matrix and application to smart packaging, with proven effectiveness against Listeria monocytogenes. However, there is a lack of in vivo studies on Carnobacterium applications, which hinders its applications in various industries despite its high potential.
Collapse
Affiliation(s)
| | - Gabriela Maia Danielski
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
- Undergraduate Program in Agronomy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | | - Isabelle Ramos Souza
- Undergraduate Program in Veterinary Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | | | | |
Collapse
|
7
|
Yadav MK, Yadav P, Dhiman M, Tewari S, Tiwari SK. Plantaricin LD1 purified from Lactobacillus plantarum LD1 inhibits biofilm formation of Enterococcus faecalis ATCC 29212 in tooth model. Lett Appl Microbiol 2022; 75:623-631. [PMID: 35146783 DOI: 10.1111/lam.13668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Plantaricin LD1 was purified to homogeneity using activity-guided chromatography. Enterococcus faecalis ATCC 29212 was found to be sensitive to plantaricin LD1 showing 13 ± 0.21 mm zone of growth inhibition. The minimum inhibitory concentration (MIC) was found to be 50 µg ml-1 against Ent. faecalis ATCC 29212. The in vitro biofilm formation by Ent. faecalis ATCC 29212 was observed which was completely inhibited in the presence of bacteriocin. Similarly, biofilm formation was also observed on the teeth surface showing purple colour whereas, treated-teeth were clean indicated no biofilm formation. Further, untreated cells of Ent. faecalis ATCC 29212 were found normal and plantaricin LD1-treated cells were ruptured seen under light microscope suggesting killing of target cells. These findings have proven the initial leads for antimicrobial and anti-biofilm activity of plantaricin LD1 against Ent. faecalis and its possible application for the treatment of endodontic diseases.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Priyanka Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Meenu Dhiman
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences, Rohtak-124001, Haryana, India
| | - Sanjay Tewari
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences, Rohtak-124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| |
Collapse
|
8
|
Rani A, Saini KC, Bast F, Varjani S, Mehariya S, Bhatia SK, Sharma N, Funk C. A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents. Biomolecules 2021; 11:biom11121860. [PMID: 34944505 PMCID: PMC8699383 DOI: 10.3390/biom11121860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Microorganisms including actinomycetes, archaea, bacteria, fungi, yeast, and microalgae are an auspicious source of vital bioactive compounds. In this review, the existing research regarding antimicrobial molecules from microorganisms is summarized. The potential antimicrobial compounds from actinomycetes, particularly Streptomyces spp.; archaea; fungi including endophytic, filamentous, and marine-derived fungi, mushroom; and microalgae are briefly described. Furthermore, this review briefly summarizes bacteriocins, halocins, sulfolobicin, etc., that target multiple-drug resistant pathogens and considers next-generation antibiotics. This review highlights the possibility of using microorganisms as an antimicrobial resource for biotechnological, nutraceutical, and pharmaceutical applications. However, more investigations are required to isolate, separate, purify, and characterize these bioactive compounds and transfer these primary drugs into clinically approved antibiotics.
Collapse
Affiliation(s)
- Alka Rani
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
| | - Khem Chand Saini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
| | - Felix Bast
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, India;
| | - Sanjeet Mehariya
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden;
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Neeta Sharma
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability-CR Trisaia, SS Jonica 106, km 419 + 500, 75026 Rotondella, Italy;
| | - Christiane Funk
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden;
| |
Collapse
|
9
|
Polydiacetylene vesicles acting as colorimetric sensor for the detection of plantaricin LD1. Anal Biochem 2021; 631:114368. [PMID: 34499898 DOI: 10.1016/j.ab.2021.114368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 01/14/2023]
Abstract
The interaction of antimicrobial peptides with membrane lipids plays a major role in numerous physiological processes. In this study, polydiacetylene (PDA) vesicles were synthesized using 10, 12-tricosadiynoic acid (TRCDA) and 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). These vesicles were applied as artificial membrane biosensor for the detection of plantaricin LD1 purified from Lactobacillus plantarum LD1. Plantaricin LD1 (200 μg/mL) was able to interact with PDA vesicles by changing the color from blue to red with colorimetric response 30.26 ± 0.59. Nisin (200 μg/mL), used as control, also changed the color of the vesicles with CR% 50.56 ± 0.98 validating the assay. The vesicles treated with nisin and plantaricin LD1 showed increased infrared absorbance at 1411.46 and 1000-1150 cm-1 indicated the interaction of bacteriocins with phospholipids and fatty acids, respectively suggesting membrane-acting nature of these bacteriocins. Further, microscopic observation of bacteriocin-treated vesicles showed several damages indicating the interaction of bacteriocins. These findings suggest that the PDA vesicles may be used as bio-mimetic sensor for the detection of bacteriocins produced by several probiotics in food and therapeutic applications.
Collapse
|
10
|
Kumar V, Singh B, van Belkum MJ, Diep DB, Chikindas ML, Ermakov AM, Tiwari SK. Halocins, natural antimicrobials of Archaea: Exotic or special or both? Biotechnol Adv 2021; 53:107834. [PMID: 34509601 DOI: 10.1016/j.biotechadv.2021.107834] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 01/16/2023]
Abstract
Haloarchaea are adapted to survive under extreme saline conditions by accumulating osmolytes and salts to counteract the high osmotic pressure in their habitats. As a consequence, their proteins have evolved to remain active, or even most active, at very high ionic strength. Halocins are proteinaceous antimicrobial substances that are ribosomally-synthesized by haloarchaea and they provide the producers an advantage in the competition for nutrients and ecological niches. These antimicrobials are stable at high temperature, elevated salt concentrations, and alkaline pH conditions. These properties have endowed them with great potential in diverse biotechnological applications, which involve extreme processing conditions (such as high salt concentrations, high pressure, or high temperatures). They kill target cells by inhibition of Na+/H+ antiporter in the membrane or modification/disruption of the cell membrane leading to cell lysis. In general, the taxonomy of haloarchaea and their typical phenotypic and genotypic characteristics are well studied; however, information regarding their halocins, especially aspects related to genetics, biosynthetic pathways, mechanism of action, and structure-function relationship is very limited. A few studies have demonstrated the potential applications of halocins in the preservation of salted food products and brine-cured hides in leather industries, protecting the myocardium from ischemia and reperfusion injury, as well as from life-threatening diseases such as cardiac arrest and cancers. In recent years, genome mining has been an essential tool to decipher the genetic basis of halocin biosynthesis. Nevertheless, this is likely the tip of the iceberg as genome analyses have revealed many putative halocins in databases waiting for further investigation. Identification and characterization of this source of halocins may lead to antimicrobials for future therapeutics and/or food preservation. Hence, the present review analyzes different aspects of halocins such as biosynthesis, mechanism of action against target cells, and potential biotechnological applications.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bijender Singh
- Department of Biotechnology, Central University of Haryana, Jant-Pali 123031, Mahendergarh, Haryana, India; Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901, USA; Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia; I. M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Alexey M Ermakov
- I. M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
11
|
Kaur R, Tiwari SK. Purification and Characterization of a New Halocin HA4 from Haloferax larsenii HA4 Isolated from a Salt Lake. Probiotics Antimicrob Proteins 2021; 13:1458-1466. [PMID: 34286419 DOI: 10.1007/s12602-021-09823-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
Halocins are antimicrobial peptides secreted by different members of haloarchaea. Halocin HA4 was purified from Haloferax larsenii HA4 using combination of ultrafiltration and chromatographic techniques. It was found to be ~ 14 kDa with unique N-terminal sequence, H2N-AEEEIFXPDX, which did not show homology with the known sequence suggesting a new/novel compound. It was found to be heat resistant up to 100 °C, stable at pH 2.0-10.0, and retained complete activity in the presence of different organic compounds such as methanol, ethanol, acetone, isopropanol, ethyl acetate, Tween 80, acetonitrile, SDS, Triton X-100, and urea. However, complete activity was reduced after the treatment with trypsin, papain, and proteinase K suggesting proteinaceous nature of the compound. The cytocidal nature of halocin HA4 was evidenced with complete loss of viable count of indicator strain, H. larsenii HA10. The change in FTIR spectrum of halocin-treated cells suggested halocin HA4 interacts with cell membrane and nucleic acids of the target cells. Thus, we report a new halocin inhibitory to related strains and may be applied in the preservation of salted foods and leather hides in the respective industries.
Collapse
Affiliation(s)
- Ramanjeet Kaur
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
12
|
Bendjeddou K, Hamma-Faradji S, Meddour AA, Belguesmia Y, Cudennec B, Bendali F, Daube G, Taminiau B, Drider D. Gut microbiota, body weight and histopathological examinations in experimental infection by methicillin-resistant Staphylococcus aureus: antibiotic versus bacteriocin. Benef Microbes 2021; 12:295-305. [PMID: 33789553 DOI: 10.3920/bm2020.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bacteriocins have been steadily reported as potential agents that may contribute, in different ways, to overcome antimicrobial drug resistance. Here, holoxenic NMRI-F mice microbiota, their body weight recovery and histopathological alterations of organs like colon, spleen and liver were examined in mice intraperitoneally infected with 108 cfu of a clinical methicillin-resistant Staphylococcus aureus (MRSA-1), and treated with enterocin DD14 alone (165 mg/kg), erythromycin alone (100 mg/kg) or their combination. Animals that received both antimicrobials presented a better body weight recovery than other groups. Less pronounced histopathological alterations were observed in mice MRSA-infected and treated with bacteriocin than in those MRSA-infected but untreated or MRSA-infected and treated with erythromycin. Noteworthy, these alterations were absent when mice were treated with MRSA-infected and treated with both antibacterial agents. Furthermore, the genus richness was significantly lower in mice infected and treated with erythromycin, compared to mice infected and treated with both antimicrobials. The beta-diversity analysis showed that non-infected mice and those infected and treated with both antimicrobials, stand apart from the other groups as supported in a NMDS model. This in vivo study shows the relevance of bacteriocin, or bacteriocin-antibiotic formulation in protecting colonic, liver and spleen soft tissues and controlling the mouse gut microbiota, following MRSA infection.
Collapse
Affiliation(s)
- K Bendjeddou
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - S Hamma-Faradji
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - A Ait Meddour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Y Belguesmia
- BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, 59000 Lille, France
| | - B Cudennec
- BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, 59000 Lille, France
| | - F Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - G Daube
- Faculty of Veterinary Medicine, Department of Food Sciences - Microbiology, FARAH, University of Liège, Quartier Vallée 2, Avenue de Cureghem 180, 4000 Liège, Belgium
| | - B Taminiau
- Faculty of Veterinary Medicine, Department of Food Sciences - Microbiology, FARAH, University of Liège, Quartier Vallée 2, Avenue de Cureghem 180, 4000 Liège, Belgium
| | - D Drider
- BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV - Institut Charles Viollette, 59000 Lille, France
| |
Collapse
|
13
|
Rani A, Saini KC, Bast F, Mehariya S, Bhatia SK, Lavecchia R, Zuorro A. Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications. Molecules 2021; 26:molecules26041142. [PMID: 33672774 PMCID: PMC7924645 DOI: 10.3390/molecules26041142] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress originates from an elevated intracellular level of free oxygen radicals that cause lipid peroxidation, protein denaturation, DNA hydroxylation, and apoptosis, ultimately impairing cell viability. Antioxidants scavenge free radicals and reduce oxidative stress, which further helps to prevent cellular damage. Medicinal plants, fruits, and spices are the primary sources of antioxidants from time immemorial. In contrast to plants, microorganisms can be used as a source of antioxidants with the advantage of fast growth under controlled conditions. Further, microbe-based antioxidants are nontoxic, noncarcinogenic, and biodegradable as compared to synthetic antioxidants. The present review aims to summarize the current state of the research on the antioxidant activity of microorganisms including actinomycetes, bacteria, fungi, protozoa, microalgae, and yeast, which produce a variety of antioxidant compounds, i.e., carotenoids, polyphenols, vitamins, and sterol, etc. Special emphasis is given to the mechanisms and signaling pathways followed by antioxidants to scavenge Reactive Oxygen Species (ROS), especially for those antioxidant compounds that have been scarcely investigated so far.
Collapse
Affiliation(s)
- Alka Rani
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151401, India; (A.R.); (K.C.S.); (F.B.)
| | - Khem Chand Saini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151401, India; (A.R.); (K.C.S.); (F.B.)
| | - Felix Bast
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151401, India; (A.R.); (K.C.S.); (F.B.)
| | - Sanjeet Mehariya
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
- Correspondence: (S.M.); (A.Z.); Tel.: +39-347-494-0910 (S.M.); +39-06-4458-5598 (A.Z.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea;
| | - Roberto Lavecchia
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
- Correspondence: (S.M.); (A.Z.); Tel.: +39-347-494-0910 (S.M.); +39-06-4458-5598 (A.Z.)
| |
Collapse
|
14
|
Danielski GM, Evangelista AG, Luciano FB, de Macedo REF. Non-conventional cultures and metabolism-derived compounds for bioprotection of meat and meat products: a review. Crit Rev Food Sci Nutr 2020; 62:1105-1118. [DOI: 10.1080/10408398.2020.1835818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gabriela Maia Danielski
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
- Undergraduate Program in Agronomy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | | | |
Collapse
|
15
|
Abbasi S, Emtiazi G. MALDI-TOF analysis of a novel extremophile peptide purified from Halarchaeum acidiphilum ASDL78 with antiarchaeal and antibacterial activities. J Basic Microbiol 2020; 60:920-930. [PMID: 32997354 DOI: 10.1002/jobm.202000392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022]
Abstract
In hypersaline environments, halophilic archaea synthesize antimicrobial substances called halocins. There is a promise to make new drugs for antibiotic-resistant strains. Here, we report the antibacterial activity of a new haloarchaea selected from Lut Desert, Iran. A total of 38 isolated halophilic bacteria and archaea were screened for the antagonistic activity test of each strain against other bacterial and archaeal strains. Finally, a strain, recognized as Halarchaeum acidiphilum, with a fast grown strain and high antagonistic potential against different strains was identified by morphological, physiological, and molecular characteristics. The halocin was produced in a semisolid submerge medium and partially purified by heat treatments and molecular weight ultrafiltration cutoff (3, 50, and 10 kDa). It was a cell-free, heat-resistant (85°C for 2 h) protein with a molecular mass near to 20 kDa produced at the endpoint of logarithmic growth. The molecular weight of halocin was 17 kDa, and indicated no apparent homology with known halocins, suggesting that this might be a new halocin. Therefore, a new strain belonging to Halarchaeum genus was isolated and characterized here that produced an antimicrobial and anti-haloarchaea halocin.
Collapse
Affiliation(s)
- Soheila Abbasi
- Department of Cell Biology, Molecular and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Giti Emtiazi
- Department of Cell Biology, Molecular and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
16
|
Jung J, Kim JS, Taffner J, Berg G, Ryu CM. Archaea, tiny helpers of land plants. Comput Struct Biotechnol J 2020; 18:2494-2500. [PMID: 33005311 PMCID: PMC7516179 DOI: 10.1016/j.csbj.2020.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 01/02/2023] Open
Abstract
Archaea are members of most microbiomes. While archaea are highly abundant in extreme environments, they are less abundant and diverse in association with eukaryotic hosts. Nevertheless, archaea are a substantial constituent of plant-associated ecosystems in the aboveground and belowground phytobiome. Only a few studies have investigated the role of archaea in plant health and its potential symbiosis in ecosystems. This review discusses recent progress in identifying how archaea contribute to plant traits such as growth, adaptation to abiotic stresses, and immune activation. We synthesized the most recent functional and molecular data on archaea, including root colonization and the volatile emission to activate plant systemic immunity. These data represent a paradigm shift in our understanding of plant-microbiota interactions.
Collapse
Affiliation(s)
- Jihye Jung
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, South Korea
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Jun-Seob Kim
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, South Korea
| | - Julian Taffner
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, South Korea
| |
Collapse
|
17
|
Baral B, Mozafari MR. Strategic Moves of "Superbugs" Against Available Chemical Scaffolds: Signaling, Regulation, and Challenges. ACS Pharmacol Transl Sci 2020; 3:373-400. [PMID: 32566906 PMCID: PMC7296549 DOI: 10.1021/acsptsci.0c00005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Superbugs' resistivity against available natural products has become an alarming global threat, causing a rapid deterioration in public health and claiming tens of thousands of lives yearly. Although the rapid discovery of small molecules from plant and microbial origin with enhanced bioactivity has provided us with some hope, a rapid hike in the resistivity of superbugs has proven to be the biggest therapeutic hurdle of all times. Moreover, several distinct mechanisms endowed by these notorious superbugs make them immune to these antibiotics subsequently causing our antibiotic wardrobe to be obsolete. In this unfortunate situation, though the time frame for discovering novel "hit molecules" down the line remains largely unknown, our small hope and untiring efforts injected in hunting novel chemical scaffolds with unique molecular targets using high-throughput technologies may safeguard us against these life-threatening challenges to some extent. Amid this crisis, the current comprehensive review highlights the present status of knowledge, our search for bacteria Achilles' heel, distinct molecular signaling that an opportunistic pathogen bestows to trespass the toxicity of antibiotics, and facile strategies and appealing therapeutic targets of novel drugs. Herein, we also discuss multidimensional strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Bikash Baral
- Department
of Biochemistry, University of Turku, Tykistökatu 6, Turku, Finland
| | - M. R. Mozafari
- Australasian
Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia
| |
Collapse
|
18
|
Development of regression model for bacteriocin production from local isolate of Lactobacillus acidophilus MS1 using Box-Behnken design. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Wang S, Zheng Z, Zou H, Li N, Wu M. Characterization of the secondary metabolite biosynthetic gene clusters in archaea. Comput Biol Chem 2018; 78:165-169. [PMID: 30530297 DOI: 10.1016/j.compbiolchem.2018.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Secondary metabolites are a range of bioactive compounds yielded by bacteria, fungi and plants, etc. The published archaea genomic data provide the opportunity for efficient identification of secondary metabolite biosynthetic gene clusters (BGCs) by genome mining. However, the study of secondary metabolites in archaea is still rare. By using the antiSMASH, we found two main putative secondary metabolite BGCs, bacteriocin and terpene in 203 Archaea genomes. Compared with the genomes of Euryarchaeota that usually lives in less complexity of environment, the genomes of Crenarchaeota usually contained more abundant bacteriocin. In these archaea genomes, we also found the positive correlation between the abundance of bacteriocin and the abundance of CRISPR spacer, suggesting the bacteriocin might be a crucial component of the innate immune system that defense the microbe living in the common environment. The structure analysis of the bacteriocin gene clusters gave a clue that the assisted genes located at the edge of clusters evolved faster than the core biosynthetic genes. To the best of our knowledge, we are the first to systematically explore the distribution of secondary metabolites in archaea, and the investigation of the relationship between BGC and CRISPR spacer expands our understanding of the evolutionary dynamic of these functional molecules.
Collapse
Affiliation(s)
- Shengqin Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhihong Zheng
- Translational Medicine Research Institute, Zhejiang University, Hangzhou, China
| | - Huixi Zou
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Nan Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
20
|
Juturu V, Wu JC. Microbial production of bacteriocins: Latest research development and applications. Biotechnol Adv 2018; 36:2187-2200. [PMID: 30385277 DOI: 10.1016/j.biotechadv.2018.10.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022]
Abstract
Bacteriocins are low molecular weight peptides secreted by the predator bacterial cells to kill sensitive cells present in the same ecosystem competing for food and other nutrients. Exceptionally few bacteriocins along with their native antibacterial property also exhibit additional anti-viral and anti-fungal properties. Bacteriocins are generally produced by Gm+, Gm- and archaea bacteria. Bacteriocins from Gm + bacteria especially from lactic acid bacteria (LAB) have been thoroughly investigated considering their great biosafety and broad industrial applications. LAB expressing bacteriocins were isolated from fermented milk and milk products, rumen of animals and soil using deferred antagonism assay. Nisin is the only bacteriocin that has got FDA approval for application as a food preservative, which is produced by Lactococcus lactis subsp. Lactis. Its crystal structure explains that its antimicrobial properties are due to the binding of NH2 terminal to lipid II molecule inhibiting the peptidoglycan synthesis and carboxy terminal forming pores in bacterial cell membrane leading to cell lysis. The hinge region connecting NH2 and carboxy terminus has been mutated to generate mutant variants with higher antimicrobial activity. In a 50 ton fermentation of the mutant strain 3807 derived from L. lactis subsp. lactis ATCC 11454, 9,960 IU/mL of nisin was produced. Currently, high purity of nisin (>99%) is very expensive and hardly commercially available. Development of more advanced tools for cost-effective separation and purification of nisin would be commercially attractive. Chemical synthesis and heterologous expression of bacteriocins ended in low yields of pure proteins. At present, bacteriocins are almost solely applied in food industries, but they have a great potential to be used in other fields such as feeds, organic fertilizers, environmental protection and personal care products. The future of bacteriocins is largely dependent on getting FDA approval for use of other bacteriocins in addition to nisin to promote the research and applications.
Collapse
Affiliation(s)
- Veeresh Juturu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore
| | - Jin Chuan Wu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| |
Collapse
|