1
|
Yin Q, Batbatan CG, Li Y, Zhang Y, Yang Q, Xiao A. Preparation and Characterization of Carrageenase Immobilized onto Polyethyleneimine-Modified Pomelo Peel. J Microbiol Biotechnol 2024; 34:132-140. [PMID: 37957113 PMCID: PMC10840462 DOI: 10.4014/jmb.2304.04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 11/15/2023]
Abstract
In this study, carrageenase immobilization was evaluated with a concise and efficient strategy. Pomelo peel cellulose (PPC) modified by polyethyleneimine (PEI) using the physical absorption method was used as a carrier to immobilize carrageenase and achieved repeated batch catalysis. In addition, various immobilization and reaction parameters were scrutinized to enhance the immobilization efficiency. Under the optimized conditions, the enzyme activity recovery rate was more than 50% and 4.1 times higher than immobilization with non-modified pomelo peels. The optimum temperature and pH of carrageenase after immobilization by PEI-modified pomelo peel, at 60°C and 7.5 respectively, were in line with the free enzyme. The temperature resistance was reduced, inconsistent with free enzyme, and pH resistance was increased. A significant loss of activity (46.8%) was observed after reusing it thrice under optimal reaction conditions. In terms of stability, the immobilized enzyme conserved 76.0% of the initial enzyme activity after 98 days of storage. Furthermore, a modest decrease in the kinetic constant (Km) value was observed, indicating the improved substrate affinity of the immobilized enzyme. Therefore, modified pomelo peel is a verified and promising enzyme immobilization system for the synthesis of inorganic solvents.
Collapse
Affiliation(s)
- Qin Yin
- College of Biological and Food Engineering, Suzhou University, Suzhou, Anhui, 234000, P.R. China
- Department of Biology, Central Mindanao University, Maramag, Bukidnon, 8710, Philippines
| | | | - Yongxing Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| | - Qiuming Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| |
Collapse
|
2
|
Abellanas-Perez P, Carballares D, Fernandez-Lafuente R, Rocha-Martin J. Glutaraldehyde modification of lipases immobilized on octyl agarose beads: Roles of the support enzyme loading and chemical amination of the enzyme on the final enzyme features. Int J Biol Macromol 2023; 248:125853. [PMID: 37460068 DOI: 10.1016/j.ijbiomac.2023.125853] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Lipase B from Candida antarctica (CALB) and lipase from Thermomyces lanuginosus (TLL) have been immobilized on octyl agarose at low loading and at a loading exceeding the maximum support capacity. Then, the enzymes have been treated with glutaraldehyde and inactivated at pH 7.0 in Tris-HCl, sodium phosphate and HEPES, giving different stabilities. Stabilization (depending on the buffer) of the highly loaded biocatalysts was found, very likely as a consequence of the detected intermolecular crosslinkings. This did not occur for the lowly loaded biocatalysts. Next, the enzymes were chemically aminated and then treated with glutaraldehyde. In the case of TLL, the intramolecular crosslinkings (visible by the apparent reduction of the protein size) increased enzyme stability of the lowly loaded biocatalysts, an effect that was further increased for the highly loaded biocatalysts due to intermolecular crosslinkings. Using CALB, the intramolecular crosslinkings were less intense, and the stabilization was lower, even though the intermolecular crosslinkings were quite intense for the highly loaded biocatalyst. The stabilization detected depended on the inactivation buffer. The interactions between enzyme loading and inactivating buffer on the effects of the chemical modifications suggest that the modification and inactivation studies must be performed under the target biocatalysts and conditions.
Collapse
Affiliation(s)
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid Spain.
| |
Collapse
|
3
|
Zdarta J, Kołodziejczak-Radzimska A, Bachosz K, Rybarczyk A, Bilal M, Iqbal HMN, Buszewski B, Jesionowski T. Nanostructured supports for multienzyme co-immobilization for biotechnological applications: Achievements, challenges and prospects. Adv Colloid Interface Sci 2023; 315:102889. [PMID: 37030261 DOI: 10.1016/j.cis.2023.102889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
The synergistic combination of current biotechnological and nanotechnological research has turned to multienzyme co-immobilization as a promising concept to design biocatalysis engineering. It has also intensified the development and deployment of multipurpose biocatalysts, for instance, multienzyme co-immobilized constructs, via biocatalysis/protein engineering to scale-up and fulfil the ever-increasing industrial demands. Considering the characteristic features of both the loaded multienzymes and nanostructure carriers, i.e., selectivity, specificity, stability, resistivity, induce activity, reaction efficacy, multi-usability, high catalytic turnover, optimal yield, ease in recovery, and cost-effectiveness, multienzyme-based green biocatalysts have become a powerful norm in biocatalysis/protein engineering sectors. In this context, the current state-of-the-art in enzyme engineering with a synergistic combination of nanotechnology, at large, and nanomaterials, in particular, are significantly contributing and providing robust tools to engineer and/or tailor enzymes to fulfil the growing catalytic and contemporary industrial needs. Considering the above critics and unique structural, physicochemical, and functional attributes, herein, we spotlight important aspects spanning across prospective nano-carriers for multienzyme co-immobilization. Further, this work comprehensively discuss the current advances in deploying multienzyme-based cascade reactions in numerous sectors, including environmental remediation and protection, drug delivery systems (DDS), biofuel cells development and energy production, bio-electroanalytical devices (biosensors), therapeutical, nutraceutical, cosmeceutical, and pharmaceutical oriented applications. In conclusion, the continuous developments in nano-assembling the multienzyme loaded co-immobilized nanostructure carriers would be a unique way that could act as a core of modern biotechnological research.
Collapse
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Agnieszka Kołodziejczak-Radzimska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Agnieszka Rybarczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
4
|
Co-Enzymes with Dissimilar Stabilities: A Discussion of the Likely Biocatalyst Performance Problems and Some Potential Solutions. Catalysts 2022. [DOI: 10.3390/catal12121570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enzymes have several excellent catalytic features, and the last few years have seen a revolution in biocatalysis, which has grown from using one enzyme to using multiple enzymes in cascade reactions, where the product of one enzyme reaction is the substrate for the subsequent one. However, enzyme stability remains an issue despite the many benefits of using enzymes in a catalytic system. When enzymes are exposed to harsh process conditions, deactivation occurs, which changes the activity of the enzyme, leading to an increase in reaction time to achieve a given conversion. Immobilization is a well-known strategy to improve many enzyme properties, if the immobilization is properly designed and controlled. Enzyme co-immobilization is a further step in the complexity of preparing a biocatalyst, whereby two or more enzymes are immobilized on the same particle or support. One crucial problem when designing and using co-immobilized enzymes is the possibility of using enzymes with very different stabilities. This paper discusses different scenarios using two co-immobilized enzymes of the same or differing stability. The effect on operational performance is shown via simple simulations using Michaelis–Menten equations to describe kinetics integrated with a deactivation term. Finally, some strategies for overcoming some of these problems are discussed.
Collapse
|
5
|
Biosynthesis of alkanes/alkenes from fatty acids or derivatives (triacylglycerols or fatty aldehydes). Biotechnol Adv 2022; 61:108045. [DOI: 10.1016/j.biotechadv.2022.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
|
6
|
Sampaio CS, Angelotti JAF, Fernandez-Lafuente R, Hirata DB. Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects - A review. Int J Biol Macromol 2022; 215:434-449. [PMID: 35752332 DOI: 10.1016/j.ijbiomac.2022.06.139] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 02/08/2023]
Abstract
In this review we have focused on the preparation of cross-linked enzyme aggregates (CLEAs) from lipases, as these are among the most used enzyme in bioprocesses. This immobilization method is considered very attractive due to preparation simplicity, non-use of supports and the possibility of using crude enzyme extracts. CLEAs provide lipase stabilization under extreme temperature or pH conditions or in the presence of organic solvents, in addition to preventing enzyme leaching in aqueous medium. However, it presents some problems in the preparation and limitations in their use. The problems in preparation refer mainly to the crosslinking step, and may be solved using an aminated feeder. The problems in handling have been tackled designing magnetic-CLEAs or trapping the CLEAs in particles with better mechanical properties, the substrate diffusion problems has been reduced by producing more porous-CLEAs, etc. The enzyme co-immobilization using combi-CLEAs is also a new tendency. Therefore, this review explores the CLEAs methodology aimed at lipase immobilization and its applications.
Collapse
Affiliation(s)
- Camila S Sampaio
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Joelise A F Angelotti
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Roberto Fernandez-Lafuente
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain.; Center of Excellence in Bionanoscience Research, Member of The External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Daniela B Hirata
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
7
|
Carballares D, Rocha-Martin J, Fernandez-Lafuente R. Chemical amination of immobilized enzymes for enzyme coimmobilization: Reuse of the most stable immobilized and modified enzyme. Int J Biol Macromol 2022; 208:688-697. [PMID: 35358572 DOI: 10.1016/j.ijbiomac.2022.03.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
Although Lecitase and the lipase from Thermomyces lanuginosus (TLL) could be coimmobilized on octyl-agarose, the stability of Lecitase was lower than that of TLL causing the user to discard active immobilized TLL when Lecitase was inactivated. Here, we propose the chemical amination of immobilized TLL to ionically exchange Lecitase on immobilized TLL, which should be released to the medium after its inactivation by incubation at high ionic strength. Using conditions where Lecitase was only adsorbed on immobilized TLL after its amination, the combibiocatalyst was produced. Unfortunately, the release of Lecitase was not possible using just high ionic strength solutions, and if detergent was added, TLL was also released from the support. This occurred when using 0.25 M ammonium sulfate, Lecitase did not immobilize on aminated TLL. That makes the use octyl-vinylsulfone supports necessary to irreversibly immobilize TLL, and after blocking with ethylendiamine, the immobilized TLL was aminated. Lecitase immobilized and released from this biocatalyst using 0.25 M ammonium sulfate and 0.1% Triton X-100. That way, a coimmobilized TLL and Lecitase biocatalyst could be produced, and after Lecitase inactivation, it could be released and the immobilized, aminated, and fully active TLL could be utilized to build a new combibiocatalyst.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
8
|
Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Design of Artificial Enzymes Bearing Several Active Centers: New Trends, Opportunities and Problems. Int J Mol Sci 2022; 23:5304. [PMID: 35628115 PMCID: PMC9141793 DOI: 10.3390/ijms23105304] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 12/11/2022] Open
Abstract
Harnessing enzymes which possess several catalytic activities is a topic where intense research has been carried out, mainly coupled with the development of cascade reactions. This review tries to cover the different possibilities to reach this goal: enzymes with promiscuous activities, fusion enzymes, enzymes + metal catalysts (including metal nanoparticles or site-directed attached organometallic catalyst), enzymes bearing non-canonical amino acids + metal catalysts, design of enzymes bearing a second biological but artificial active center (plurizymes) by coupling enzyme modelling and directed mutagenesis and plurizymes that have been site directed modified in both or in just one active center with an irreversible inhibitor attached to an organometallic catalyst. Some examples of cascade reactions catalyzed by the enzymes bearing several catalytic activities are also described. Finally, some foreseen problems of the use of these multi-activity enzymes are described (mainly related to the balance of the catalytic activities, necessary in many instances, or the different operational stabilities of the different catalytic activities). The design of new multi-activity enzymes (e.g., plurizymes or modified plurizymes) seems to be a topic with unarguable interest, as this may link biological and non-biological activities to establish new combo-catalysis routes.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (D.C.); (R.M.-S.)
| | - Roberto Morellon-Sterling
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (D.C.); (R.M.-S.)
- Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, C/Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (D.C.); (R.M.-S.)
- Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
The combination of covalent and ionic exchange immobilizations enables the coimmobilization on vinyl sulfone activated supports and the reuse of the most stable immobilized enzyme. Int J Biol Macromol 2022; 199:51-60. [PMID: 34973984 DOI: 10.1016/j.ijbiomac.2021.12.148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
The coimmobilization of lipases from Rhizomucor miehei (RML) and Candida antarctica (CALB) has been intended using agarose beads activated with divinyl sulfone. CALB could be immobilized on this support, while RML was not. However, RML was ionically exchanged on this support blocked with ethylendiamine. Therefore, both enzymes could be coimmobilized on the same particle, CALB covalently using the vinyl sulfone groups, and RML via anionic exchange on the aminated blocked support. However, immobilized RML was far less stable than immobilized CALB. To avoid the discarding of CALB (that maintained 90% of the initial activity after RML inactivation), a strategy was developed. Inactivated RML was desorbed from the support using ammonium sulfate and 1% Triton X-100 at pH 7.0. That way, 5 cycles of RML thermal inactivation, discharge of the inactivated enzyme and re-immobilization of a fresh sample of RML could be performed. In the last cycle, immobilized CALB activity was still over 90% of the initial one. Thus, the strategy permits that enzymes can be coimmobilized on vinyl sulfone supports even if one of them cannot be immobilized on it, and also permits the reuse of the most stable enzyme (if it is irreversibly attached to the support).
Collapse
|
10
|
Carballares D, Rocha-Martin J, Fernandez-Lafuente R. Coimmobilization of lipases exhibiting three very different stability ranges. Reuse of the active enzymes and selective discarding of the inactivated ones. Int J Biol Macromol 2022; 206:580-590. [PMID: 35218810 DOI: 10.1016/j.ijbiomac.2022.02.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
Lipase B from Candida antarctica (CALB) and lipases from Candida rugosa (CRL) and Rhizomucor miehei (RML) have been coimmobilized on octyl and octyl-Asp agarose beads. CALB was much more stable than CRL, that was significantly more stable than RML. This forces the user to discard immobilized CALB and CRL when only RML has been inactivated, or immobilized CALB when CRL have been inactivated. To solve this problem, a new strategy has been proposed using three different immobilization protocols. CALB was covalently immobilized on octyl-vinyl sulfone agarose and blocked with Asp. Then, CRL was immobilized via interfacial activation. After coating both immobilized enzymes with polyethylenimine, RML could be immobilized via ion exchange. That way, by incubating in ammonium sulfate solutions, inactivated RML could be released enabling the reuse of coimmobilized CRL and CALB to build a new combi-lipase. Incubating in triton and ammonium sulfate solutions, it was possible to release inactivated CRL and RML, enabling the reuse of immobilized CALB when CRL was inactivated. These cycles could be repeated for 3 full cycles, maintaining the activity of the active and immobilized enzymes.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
11
|
Enzyme co-immobilization: Always the biocatalyst designers' choice…or not? Biotechnol Adv 2021; 51:107584. [DOI: 10.1016/j.biotechadv.2020.107584] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
|
12
|
Li Z, Chen H, Fang Y, Ma Y, Chen H, Yang B, Wang Y. A Highly Efficient Three-Liquid-Phase-Based Enzymatic One-Pot Multistep Reaction System with Recoverable Enzymes for the Synthesis of Biodiesel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5481-5490. [PMID: 33955745 DOI: 10.1021/acs.jafc.0c07448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A three-liquid-phase system (TLPS) was developed and used as a novel enzymatic one-pot multistep reaction (EOMR) system. In this system, lipase and phospholipase were enriched in a single liquid phase with a high recovery (ca. 98%) and then used for the simultaneous catalysis of mutually inhibiting and interfering reactions (hydrolysis of phospholipids and glyceride in crude oil). A novel emulsion containing the two dispersed droplets (W2/O/W2 and W1/W2 emulsion structures) could be the key reason for this phenomenon because the emulsion system not only provided a new catalytic interface but also relieved the product inhibition. As a result, the content of free fatty acid (main hydrolysate of the glyceride) and the removal of phospholipid from the crude oil could be increased to 96 and 95%, respectively, within 1 h. The product obtained from the EOMR was directly used in the production of biodiesel via enzymatic esterification, and the content of fatty acid methanol ester could be increased to 93% within 2 h. Furthermore, the enzymes in the middle phase could also be reused, at least for eight rounds without significant loss in catalytic efficiency. Therefore, the TLPS could be considered as an ideal catalytic platform for the EOMR.
Collapse
Affiliation(s)
- Zhigang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hua Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yinglin Fang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yunjian Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huayong Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bo Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
13
|
Amaral-Fonseca M, Morellon-Sterling R, Fernández-Lafuente R, Tardioli PW. Optimization of simultaneous saccharification and isomerization of dextrin to high fructose syrup using a mixture of immobilized amyloglucosidase and glucose isomerase. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts 2020. [DOI: 10.3390/catal10101207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The lipases A and B from Candida antarctica (CALA and CALB), Thermomyces lanuginosus (TLL) or Rhizomucor miehei (RML), and the commercial and artificial phospholipase Lecitase ultra (LEU) may be co-immobilized on octyl agarose beads. However, LEU and RML became almost fully inactivated under conditions where CALA, CALB and TLL retained full activity. This means that, to have a five components co-immobilized combi-lipase, we should discard 3 fully active and immobilized enzymes when the other two enzymes are inactivated. To solve this situation, CALA, CALB and TLL have been co-immobilized on octyl-vinyl sulfone agarose beads, coated with polyethylenimine (PEI) and the least stable enzymes, RML and LEU have been co-immobilized over these immobilized enzymes. The coating with PEI is even favorable for the activity of the immobilized enzymes. It was checked that RML and LEU could be released from the enzyme-PEI coated biocatalyst, although this also produced some release of the PEI. That way, a protocol was developed to co-immobilize the five enzymes, in a way that the most stable could be reused after the inactivation of the least stable ones. After RML and LEU inactivation, the combi-biocatalysts were incubated in 0.5 M of ammonium sulfate to release the inactivated enzymes, incubated again with PEI and a new RML and LEU batch could be immobilized, maintaining the activity of the three most stable enzymes for at least five cycles of incubation at pH 7.0 and 60 °C for 3 h, incubation on ammonium sulfate, incubation in PEI and co-immobilization of new enzymes. The effect of the order of co-immobilization of the different enzymes on the co-immobilized biocatalyst activity was also investigated using different substrates, finding that when the most active enzyme versus one substrate was immobilized first (nearer to the surface of the particle), the activity was higher than when this enzyme was co-immobilized last (nearer to the particle core).
Collapse
|
15
|
Kim S, Kwon K, Cha J, Yoo S, Han MS, Tae G, Kwon I. Pluronic-Based Nanocarrier Platform Encapsulating Two Enzymes for Cascade Reactions. ACS APPLIED BIO MATERIALS 2020; 3:5126-5135. [DOI: 10.1021/acsabm.0c00591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Seoungkyun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kiyoon Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jaehyun Cha
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Soyeon Yoo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
16
|
Wahab RA, Elias N, Abdullah F, Ghoshal SK. On the taught new tricks of enzymes immobilization: An all-inclusive overview. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104613] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts 2020. [DOI: 10.3390/catal10060605] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipases are among the most utilized enzymes in biocatalysis. In many instances, the main reason for their use is their high specificity or selectivity. However, when full modification of a multifunctional and heterogeneous substrate is pursued, enzyme selectivity and specificity become a problem. This is the case of hydrolysis of oils and fats to produce free fatty acids or their alcoholysis to produce biodiesel, which can be considered cascade reactions. In these cases, to the original heterogeneity of the substrate, the presence of intermediate products, such as diglycerides or monoglycerides, can be an additional drawback. Using these heterogeneous substrates, enzyme specificity can promote that some substrates (initial substrates or intermediate products) may not be recognized as such (in the worst case scenario they may be acting as inhibitors) by the enzyme, causing yields and reaction rates to drop. To solve this situation, a mixture of lipases with different specificity, selectivity and differently affected by the reaction conditions can offer much better results than the use of a single lipase exhibiting a very high initial activity or even the best global reaction course. This mixture of lipases from different sources has been called “combilipases” and is becoming increasingly popular. They include the use of liquid lipase formulations or immobilized lipases. In some instances, the lipases have been coimmobilized. Some discussion is offered regarding the problems that this coimmobilization may give rise to, and some strategies to solve some of these problems are proposed. The use of combilipases in the future may be extended to other processes and enzymes.
Collapse
|
18
|
Coimmobilization of different lipases: Simple layer by layer enzyme spatial ordering. Int J Biol Macromol 2020; 145:856-864. [DOI: 10.1016/j.ijbiomac.2019.10.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
|
19
|
Editorial for Special Issue: Enzyme Immobilization and Its Applications. Molecules 2019; 24:molecules24244619. [PMID: 31861120 PMCID: PMC6943568 DOI: 10.3390/molecules24244619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
|
20
|
Improving the Yields and Reaction Rate in the Ethanolysis of Soybean Oil by Using Mixtures of Lipase CLEAs. Molecules 2019; 24:molecules24234392. [PMID: 31805665 PMCID: PMC6930585 DOI: 10.3390/molecules24234392] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Abstract
Due to the heterogeneity of oils, the use of mixtures of lipases with different activity for a large number of glycerol-linked carboxylic acids that compose the substrate has been proposed as a better alternative than the use of one specific lipase preparation in the enzymatic synthesis of biodiesel. In this work, mixtures of lipases from different sources were evaluated in their soluble form in the ethanolysis of soybean oil. A mixture of lipases (50% of each lipase, in activity basis) from porcine pancreas (PPL) and Thermomyces lanuginosus lipase (TLL) gave the highest fatty acid ethyl ester (FAEE) yield (around 20 wt.%), while the individual lipases gave FAEE yields 100 and 5 times lower, respectively. These lipases were immobilized individually by the cross-linked enzyme aggregates (CLEAs) technique, yielding biocatalysts with 89 and 119% of expressed activity, respectively. A mixture of these CLEAs (also 50% of each lipase, in activity basis) gave 90.4 wt.% FAEE yield, while using separately CLEAs of PPL and TLL, the FAEE yields were 84.7 and 75.6 wt.%, respectively, under the same reaction conditions. The mixture of CLEAs could be reused (five cycles of 6 h) in the ethanolysis of soybean oil in a vortex flow-type reactor yielding an FAEE yield higher than 80% of that of the first batch.
Collapse
|
21
|
Wu Z, Shi L, Yu X, Zhang S, Chen G. Co-Immobilization of Tri-Enzymes for the Conversion of Hydroxymethylfurfural to 2,5-Diformylfuran. Molecules 2019; 24:E3648. [PMID: 31658589 PMCID: PMC6832383 DOI: 10.3390/molecules24203648] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
Acting as a "green" manufacturing route, the enzyme toolbox made up of galactose oxidase, catalase, and horseradish peroxidase can achieve a satisfactory yield of 2,5-diformylfuran derived from 30 mM hydroxymethylfurfural. However, as the concentration of hydroxymethylfurfural increases, the substrate causes oxidative damage to the activity of the tri-enzyme system, and the accumulated hydrogen peroxide produced by galactose oxidase causes tri-enzyme inactivation. The cost of tri-enzymes is also very high. These problems prevent the utilization of this enzyme toolbox in practice. To address this, galactose oxidase, catalase, and horseradish peroxidase were co-immobilized into Cu3(PO4)2 nanoflowers in this study. The resulting co-immobilized tri-enzymes possessed better tolerance towards the oxidative damage caused by hydroxymethylfurfural at high concentrations, as compared to free tri-enzymes. Moreover, the 2,5-diformylfuran yield of co-immobilized tri-enzymes (95.7 ± 2.7%) was 1.06 times higher than that of separately immobilized enzymes (90.4 ± 1.9%). This result could be attributed to the boosted protective effect provided by catalase to the activity of galactose oxidase, owing to the physical proximity between them on the same support. After 30 recycles, co-immobilized tri-enzymes still achieves 86% of the initial yield. Moreover, co-immobilized tri-enzymes show enhanced thermal stability compared with free tri-enzymes. This work paves the way for the production of 2,5-diformylfuran from hydroxymethylfurfural via co-immobilized tri-enzymes.
Collapse
Affiliation(s)
- Zhuofu Wu
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Linjuan Shi
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaoxiao Yu
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Sitong Zhang
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Guang Chen
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
22
|
Rodrigues RC, Virgen-Ortíz JJ, dos Santos JC, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 2019; 37:746-770. [DOI: 10.1016/j.biotechadv.2019.04.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
|
23
|
Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:741-747. [DOI: 10.1016/j.bbapap.2019.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 01/26/2023]
|
24
|
Dal Magro L, de Moura KS, Backes BE, de Menezes EW, Benvenutti EV, Nicolodi S, Klein MP, Fernandez-Lafuente R, Rodrigues RC. Immobilization of pectinase on chitosan-magnetic particles: Influence of particle preparation protocol on enzyme properties for fruit juice clarification. ACTA ACUST UNITED AC 2019; 24:e00373. [PMID: 31516853 PMCID: PMC6728273 DOI: 10.1016/j.btre.2019.e00373] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
Magnetic-chitosan particles were prepared following three different protocols enabling the preparation of particles with different sizes - nano (Nano-CMag, Micro (Micro-CMag) and Macro (Macro-CMag) - and used for pectinase immobilization and clarification of grape, apple and orange juices. The particle size had a great effect in the kinetic parameters, Nano-CMag biocatalyst presented the highest Vmax value (78.95 mg. min-1), followed by Micro-CMag and Macro-CMag, with Vmax of 57.20 mg.min-1 and 46.03 mg.min-1, respectively. However, the highest thermal stability was achieved using Macro-CMag, that was 8 and 3-times more stable than Nano-CMag and Micro-CMag biocatalysts, respectively. Pectinase immobilized on Macro-CMag kept 85% of its initial activity after 25 batch cycles in orange juice clarification. These results suggested that the chitosan magnetic biocatalysts presented great potential application as clarifying catalysts for the fruit juice industry and the great importance of the chitosan particles preparation on the final biocatalyst properties.
Collapse
Affiliation(s)
- Lucas Dal Magro
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, ZC 28049, Madrid, Spain
| | - Kelly Silva de Moura
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Betina Elys Backes
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Eliana Weber de Menezes
- Laboratory of Solids and Surfaces, Institute of Chemistry, UFRGS, P.O. Box 15003, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Edilson Valmir Benvenutti
- Laboratory of Solids and Surfaces, Institute of Chemistry, UFRGS, P.O. Box 15003, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Sabrina Nicolodi
- Magnetism Laboratory, Institute of Physics, Federal University of Rio Grande do Sul, P.O. Box 15051, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Manuela P. Klein
- Department of Nutrition, Federal University of Health Sciences of Porto Alegre (UFCSPA), ZC 90050-170, Porto Alegre, RS, Brazil
| | - Roberto Fernandez-Lafuente
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, ZC 28049, Madrid, Spain
- Corresponding authors.
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
- Corresponding authors.
| |
Collapse
|
25
|
|
26
|
Abstract
Dextran aldehyde (dexOx), resulting from the periodate oxidative cleavage of 1,2-diol moiety inside dextran, is a polymer that is very useful in many areas, including as a macromolecular carrier for drug delivery and other biomedical applications. In particular, it has been widely used for chemical engineering of enzymes, with the aim of designing better biocatalysts that possess improved catalytic properties, making them more stable and/or active for different catalytic reactions. This polymer possesses a very flexible hydrophilic structure, which becomes inert after chemical reduction; therefore, dexOx comes to be highly versatile in a biocatalyst design. This paper presents an overview of the multiple applications of dexOx in applied biocatalysis, e.g., to modulate the adsorption of biomolecules on carrier surfaces in affinity chromatography and biosensors design, to serve as a spacer arm between a ligand and the support in biomacromolecule immobilization procedures or to generate artificial microenvironments around the enzyme molecules or to stabilize multimeric enzymes by intersubunit crosslinking, among many other applications.
Collapse
|
27
|
Dal Magro L, Kornecki JF, Klein MP, Rodrigues RC, Fernandez‐Lafuente R. Stability/activity features of the main enzyme components of rohapect 10L. Biotechnol Prog 2019; 35:e2877. [DOI: 10.1002/btpr.2877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Lucas Dal Magro
- Department of Biocatalysis, ICP‐CSICCampus UAM‐CSIC, Cantoblanco Madrid ZC Spain
- Biotechnology, Bioprocess and Biocatalysis GroupInstitute of Food Science and Technology, Federal University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Jakub F. Kornecki
- Department of Biocatalysis, ICP‐CSICCampus UAM‐CSIC, Cantoblanco Madrid ZC Spain
| | - Manuela P. Klein
- Department of NutritionFederal University of Health Sciences of Porto Alegre (UFCSPA) Porto Alegre RS Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess and Biocatalysis GroupInstitute of Food Science and Technology, Federal University of Rio Grande do Sul Porto Alegre RS Brazil
| | | |
Collapse
|
28
|
Increasing the Enzyme Loading Capacity of Porous Supports by a Layer-by-Layer Immobilization Strategy Using PEI as Glue. Catalysts 2019. [DOI: 10.3390/catal9070576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A new strategy to increase the enzyme-loading capacity of porous supports was investigated. Lipase from Pseudomonas fluorescens (PFL) was immobilized on octyl-agarose (OA) beads and treated with polyethyleneimine (PEI). Then, PFL was immobilized on the previous PFL layer. Next, the biocatalyst was coated with PEI and a third layer of PFL was added. Sodium dodecyl sulfate polyacrylamide electrophoresis showed that the amount of PFL proportionally increased with each enzyme layer; however, the effects on biocatalyst activity were not as clear. Hydrolyzing 50 mM of triacetin at 25 °C, the activity of the three-layer biocatalyst was even lower than that of the bi-layer one; on the contrary its activity was higher when the activity was measured at 4 °C in the presence of 30% acetonitrile (that reduced the activity and thus the relevance of the substrate diffusion limitations). That is, the advantage of the multilayer formation depends on the specific activity of the enzyme and on the diffusion limitations of the substrate. When octyl agarose (OA)-PFL-PEI-PFL preparation was treated with glutaraldehyde, the activity was reduced, although the enzyme stability increased and the immobilization of the last PFL layer offered results similar to the one obtained using the three-layer preparation without glutaraldehyde modification (90%).
Collapse
|
29
|
Arana-Peña S, Mendez-Sanchez C, Rios NS, Ortiz C, Gonçalves LR, Fernandez-Lafuente R. New applications of glyoxyl-octyl agarose in lipases co-immobilization: Strategies to reuse the most stable lipase. Int J Biol Macromol 2019; 131:989-997. [DOI: 10.1016/j.ijbiomac.2019.03.163] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/14/2019] [Accepted: 03/23/2019] [Indexed: 01/10/2023]
|
30
|
Jamwal S, Dautoo UK, Ranote S, Dharela R, Chauhan GS. Enhanced catalytic activity of new acryloyl crosslinked cellulose dialdehyde-nitrilase Schiff base and its reduced form for nitrile hydrolysis. Int J Biol Macromol 2019; 131:117-126. [DOI: 10.1016/j.ijbiomac.2019.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/27/2022]
|
31
|
Reuse of Lipase from Pseudomonas fluorescens via Its Step-by-Step Coimmobilization on Glyoxyl-Octyl Agarose Beads with Least Stable Lipases. Catalysts 2019. [DOI: 10.3390/catal9050487] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coimmobilization of lipases may be interesting in many uses, but this means that the stability of the least stable enzyme determines the stability of the full combilipase. Here, we propose a strategy that permits the reuse the most stable enzyme. Lecitase Ultra (LU) (a phospholipase) and the lipases from Rhizomucor miehei (RML) and from Pseudomonas fluorescens (PFL) were immobilized on octyl agarose, and their stabilities were studied under a broad range of conditions. Immobilized PFL was found to be the most stable enzyme under all condition ranges studied. Furthermore, in many cases it maintained full activity, while the other enzymes lost more than 50% of their initial activity. To coimmobilize these enzymes without discarding fully active PFL when LU or RML had been inactivated, PFL was covalently immobilized on glyoxyl-agarose beads. After biocatalysts reduction, the other enzyme was coimmobilized just by interfacial activation. After checking that glyoxyl-octyl-PFL was stable in 4% Triton X-100, the biocatalysts of PFL coimmobilized with LU or RML were submitted to inactivation under different conditions. Then, the inactivated least stable coimmobilized enzyme was desorbed (using 4% detergent) and a new enzyme reloading (using in some instances RML and in some others employing LU) was performed. The initial activity of immobilized PFL was maintained intact for several of these cycles. This shows the great potential of this lipase coimmobilization strategy.
Collapse
|
32
|
Affiliation(s)
- Ee Taek Hwang
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Seonbyul Lee
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| |
Collapse
|
33
|
Demirbas O, Calimli MH, Kuyuldar E, Alma MH, Nas MS, Sen F. Equilibrium, Kinetics, and Thermodynamic of Adsorption of Enzymes on Diatomite Clay Materials. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00615-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Immobilization of Eversa Lipase on Octyl Agarose Beads and Preliminary Characterization of Stability and Activity Features. Catalysts 2018. [DOI: 10.3390/catal8110511] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eversa is an enzyme recently launched by Novozymes to be used in a free form as biocatalyst in biodiesel production. This paper shows for first time the immobilization of Eversa (a commercial lipase) on octyl and aminated agarose beads and the comparison of the enzyme properties to those of the most used lipase, the isoform B from Candida antarctica (CALB) immobilized on octyl agarose beads. Immobilization on octyl and aminated supports of Eversa has not had a significant effect on enzyme activity versus p-nitrophenyl butyrate (pNPB) under standard conditions (pH 7), but immobilization on octyl agarose beads greatly enhanced the stability of the enzyme under all studied conditions, much more than immobilization on aminated support. Octyl-Eversa was much more stable than octyl-CALB at pH 9, but it was less stable at pH 5. In the presence of 90% acetonitrile or dioxane, octyl-Eversa maintained the activity (even increased the activity) after 45 days of incubation in a similar way to octyl-CALB, but in 90% of methanol, results are much worse, and octyl-CALB became much more stable than Eversa. Coating with PEI has not a clear effect on octyl-Eversa stability, although it affected enzyme specificity and activity response to the changes in the pH. Eversa immobilized octyl supports was more active than CALB versus triacetin or pNPB, but much less active versus methyl mandelate esters. On the other hand, Eversa specificity and response to changes in the medium were greatly modulated by the immobilization protocol or by the coating of the immobilized enzyme with PEI. Thus, Eversa may be a promising biocatalyst for many processes different to the biodiesel production and its properties may be greatly improved following a suitable immobilization protocol, and in some cases is more stable and active than CALB.
Collapse
|
35
|
Co-immobilization of lipases and β- d -galactosidase onto magnetic nanoparticle supports: Biochemical characterization. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Gennari A, Mobayed FH, da Silva Rafael R, Rodrigues RC, Sperotto RA, Volpato G, Volken de Souza CF. Modification of Immobead 150 support for protein immobilization: Effects on the properties of immobilizedAspergillus oryzaeβ-galactosidase. Biotechnol Prog 2018; 34:934-943. [DOI: 10.1002/btpr.2652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/21/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates; Lajeado RS Brazil
| | - Francielle H. Mobayed
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates; Lajeado RS Brazil
| | - Ruan da Silva Rafael
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates; Lajeado RS Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess and Biocatalysis Group; Institute of Food Science and Technology, Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Raul A. Sperotto
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates; Lajeado RS Brazil
| | - Giandra Volpato
- Curso de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre; Porto Alegre RS Brazil
| | - Claucia F. Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates; Lajeado RS Brazil
| |
Collapse
|
37
|
Martin LS, Ceron A, Oliveira PC, Zanin GM, de Castro HF. Different organic components on silica hybrid matrices modulate the lipase inhibition by the glycerol formed in continuous transesterification reactions. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Escobar S, Bernal C, Bolivar JM, Nidetzky B, López-Gallego F, Mesa M. Understanding the silica-based sol-gel encapsulation mechanism of Thermomyces lanuginosus lipase: The role of polyethylenimine. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Improved stability of immobilized lipases via modification with polyethylenimine and glutaraldehyde. Enzyme Microb Technol 2017; 106:67-74. [DOI: 10.1016/j.enzmictec.2017.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 01/11/2023]
|
40
|
Exploiting the Versatility of Aminated Supports Activated with Glutaraldehyde to Immobilize β-galactosidase from Aspergillus oryzae. Catalysts 2017. [DOI: 10.3390/catal7090250] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
41
|
Virgen-Ortíz JJ, dos Santos JCS, Berenguer-Murcia Á, Barbosa O, Rodrigues RC, Fernandez-Lafuente R. Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. J Mater Chem B 2017; 5:7461-7490. [DOI: 10.1039/c7tb01639e] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the possible roles of polyethylenimine (PEI) in the design of improved immobilized biocatalysts from diverse perspectives.
Collapse
Affiliation(s)
- Jose J. Virgen-Ortíz
- CONACYT-Centro de Investigación en Alimentación y Desarrollo
- A.C. (CIAD)-Consorcio CIDAM
- 58341 Morelia
- Mexico
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Acarape
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Campus de San Vicente del Raspeig
- Ap. 99-03080 Alicante
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Av. Bento Gonçalves
- Porto Alegre
| | | |
Collapse
|