1
|
Hu J, Chen B, Qu S, Liu S, Yang X, Qiao K, Su Y, Liu Z, Chen X, Liu Z, Wang Q. Anti-Melanogenic Effects of Takifugu flavidus Muscle Hydrolysate in B16F10 Melanoma Cells and Zebrafish. Mar Drugs 2024; 22:206. [PMID: 38786597 PMCID: PMC11122720 DOI: 10.3390/md22050206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided virtual screening to identify a novel peptide that potently inhibited melanin synthesis, simulated its binding mode to TYR, and evaluated functional efficacy in vitro and in vivo. TFMH inhibited the diphenolase activities of mTYR, reducing TYR substrate binding activity and effectively inhibiting melanin synthesis. TFMH indirectly reduced cAMP response element-binding protein phosphorylation in vitro by downregulating melanocortin 1 receptor expression, thereby inhibiting expression of the microphthalmia-associated transcription factor, further decreasing TYR, tyrosinase related protein 1, and dopachrome tautomerase expression and ultimately impeding melanin synthesis. In zebrafish, TFMH significantly reduced black spot formation. TFMH (200 μg/mL) decreased zebrafish TYR activity by 43% and melanin content by 52%. Molecular dynamics simulations over 100 ns revealed that the FGFRSP (T-6) peptide stably binds mushroom TYR via hydrogen bonds and ionic interactions. T-6 (400 μmol/L) reduced melanin content in B16F10 melanoma cells by 71% and TYR activity by 79%. In zebrafish, T-6 (200 μmol/L) inhibited melanin production by 64%. TFMH and T-6 exhibit good potential for the development of natural skin-whitening cosmetic products.
Collapse
Affiliation(s)
- Jinjin Hu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Shuaijie Qu
- School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.Q.); (X.Y.)
| | - Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Xiaoyu Yang
- School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.Q.); (X.Y.)
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Zhihui Liu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Xiaoe Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361000, China; (B.C.); (S.L.); (K.Q.); (Y.S.)
| | - Qin Wang
- School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.Q.); (X.Y.)
| |
Collapse
|
2
|
Liu F, Xu T, He J, Jiang Y, Qu L, Wang L, Ma J, Yang Q, Wu W, Sun D, Chen Y. Exploring the potential of white birch sap: A natural alternative to traditional skin whitening agents with reduced side effects. Heliyon 2024; 10:e26715. [PMID: 38455547 PMCID: PMC10918162 DOI: 10.1016/j.heliyon.2024.e26715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Common tyrosinase (TYR) inhibitors used in cosmetics, such as hydroquinone, kojic acid, and arbutin, can cause side effects including erythema, skin peeling, and dryness. Therefore, the development of natural whitening agents that offer excellent permeability, minimal irritation, and high safety has become a primary focus in the field of TYR inhibitors. In this study, we demonstrate that White birch sap (WBS), within a safe concentration range, effectively reduces TYR activity and melanin content in both B16F10 mouse melanoma cells and zebrafish larvae. Importantly, WBS exhibits minimal irritation to neutrophils in fluorescent zebrafish and does not affect the behavior of adult zebrafish. Furthermore, WBS downregulates the gene expression levels of microphthalmia-associated transcription factor, TYR, tyrosinase-related protein-1, and tyrosinase-related protein-2 in B16F10 cells. In conclusion, our research confirms that WBS, a naturally derived substance, offers high safety and mild effects, making it a promising candidate for a skin-whitening agent.
Collapse
Affiliation(s)
- Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Yiting Jiang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Linkai Qu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325035, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Yan Chen
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 32400, China
| |
Collapse
|
3
|
Zhao Y, Yuan L, Bai XL, Jiang XX, Zhang Y, Fang Q, Zhang Q, Liao X. Tyrosinase covalently immobilized on carboxyl functionalized magnetic nanoparticles for fishing of the enzyme's ligands from Prunellae Spica. J Sep Sci 2022; 45:3635-3645. [PMID: 35852941 DOI: 10.1002/jssc.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022]
Abstract
In this study, tyrosinase was immobilized on carboxyl functionalized silica-coated magnetic nanoparticles for the first time to be used for fishing of tyrosinase's ligands present in complex plant extract. The immobilized tyrosinase was characterized by transmission electron microscopy, vibrating sample magnetometry, Fourier transform infrared spectroscopy, thermo-gravimetric analyzer, and atomic force microscopy. The reusability and thermostability of the immobilized tyrosinase were found significantly superior to its free counterpart. Two tyrosinase's ligands, that is, caffeic acid (1) and rosmarinic acid (2), were fished out from extract of the traditional Chinese medicine Prunellae Spica by the immobilized tyrosinase. Compound 1 was found to be an activator of the enzyme with the half maximal effective concentration value of 0.27 ± 0.06 mM, while compound 2 was an inhibitor with the half maximal inhibitory concentration value of 0.14 ± 0.03 mM. Taking advantage of the convenience of magnetic separation and specific extraction ability of ligand fishing, the proposed method exhibited great potential for screening of bioactive compounds from complex matrices.
Collapse
Affiliation(s)
- Yan Zhao
- School of Science, Xihua University, Chengdu, P. R. China
| | - Li Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xin-Xin Jiang
- School of Science, Xihua University, Chengdu, P. R. China
| | - Yi Zhang
- School of Science, Xihua University, Chengdu, P. R. China
| | - Qiong Fang
- School of Science, Xihua University, Chengdu, P. R. China
| | - Qin Zhang
- School of Science, Xihua University, Chengdu, P. R. China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| |
Collapse
|
4
|
Sun Y, Zhou L, Liao T, Liu J, Yu K, Zou L, Zhou W, Liu W. Comparing the effect of benzoic acid and cinnamic acid hydroxyl derivatives on polyphenol oxidase: activity, action mechanism, and molecular docking. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3771-3780. [PMID: 34921410 DOI: 10.1002/jsfa.11725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Polyphenol oxidase (PPO) is considered to have a key role in the food industry because it initiates enzymatic browning in the processing and storage of fruit and vegetables. Increasing numbers of benzoic and cinnamic acid derivatives have been found to be efficient inhibitors of polyphenol oxidase, but a comparison study on activity and action mechanism is lacking. In this study, 18 benzoic acid and cinnamic acid hydroxy derivatives were selected and investigated. RESULTS Three substrates, four activators and 11 inhibitors were identified from benzoic and cinnamic acid derivatives. 2,4-Dihydroxycinnamic acid and benzoic acid showed the strongest inhibitory effect on PPO, with IC50 of 0.092 and1.425 mmol L-1 , respectively. Benzoic acid reversibly inhibited PPO in a competitive manner, while 2,4-dihydroxycinnamic acid showed a mixed-type inhibition. Both of them showed that static-type fluorescence quenching and electrostatic interaction were the main driving force in the bonding process. Compared with benzoic acid, 2,4-dihydroxycinnamic acid more easily formed hydrogen bonds in the active site of PPO, making the interaction more stable. CONCLUSION Comparative analysis showed that the inhibition effect of cinnamic acid hydroxyl derivatives on PPO was stronger than that of benzoic acid derivatives. Benzoic acid and 2,4-dihydroxycinnamic acid were the strongest inhibitors. PPO inhibitors identified from benzoic and cinnamic acid derivatives are expected to be promising inhibitors for controlling fruit and vegetable browning. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuefang Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Lei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Junping Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Kaibo Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
A Study on the Skin Whitening Activity of Digesta from Edible Bird's Nest: A Mucin Glycoprotein. Gels 2021; 8:gels8010024. [PMID: 35049559 PMCID: PMC8774831 DOI: 10.3390/gels8010024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Edible bird’s nest (EBN) is an unusual mucin glycoprotein. In China, it is popular among consumers due to its skin whitening activity. However, the relationship between protein, sialic acid, and the whitening activity of EBN after digestion is still unclear. In the present work, the whitening activity (antioxidant activity and tyrosinase inhibitory activity) of digested EBN were studied by HepG2 and B16 cell models. The dissolution rate of protein and sialic acid was 49.59% and 46.45% after the simulated digestion, respectively. The contents of free sialic acid and glycan sialic acid in EBN digesta were 17.82% and 12.24%, respectively. HepG2 cell experiment showed that the digested EBN had significant antioxidant activity, with EC50 of 1.84 mg/mL, and had a protective effect on H2O2-induced oxidative damage cells. The results of H2O2-induced oxidative damage showed that the cell survival rate increased from 40% to 57.37% when the concentration of digested EBN was 1 mg/mL. The results of the B16 cell experiment showed that the digested EBN had a significant inhibitory effect on tyrosinase activity, and the EC50 value of tyrosinase activity was 7.22 mg/mL. Cell experiments showed that free sialic acid had stronger antioxidant activity and tyrosinase inhibitory activity than glycan sialic acid. The contribution rate analysis showed that protein component was the main antioxidant component in digestive products, and the contribution rate was 85.87%; free sialic acid was the main component that inhibited tyrosinase activity, accounting for 63.43%. The products of the complete digestion of EBN are suitable for the development of a new generation of whitening health products.
Collapse
|
6
|
A rapid method and mechanism to identify the active compounds in Malus micromalus Makino fruit with spectrum-effect relationship, components knock-out and molecular docking technology. Food Chem Toxicol 2021; 150:112086. [DOI: 10.1016/j.fct.2021.112086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/27/2022]
|
7
|
Santos FRS, Andrade JT, Sousa CDF, Fernandes JS, Carmo LF, Araújo MGF, Ferreira JMS, Villar JAFP. Synthesis and Evaluation of the in vitro Antimicrobial Activity of Triazoles, Morpholines and Thiosemicarbazones. Med Chem 2019; 15:38-50. [PMID: 30058497 DOI: 10.2174/1573406414666180730111954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microbial infections is a global public health problem. The aim of this work was to synthesize and evaluate the antimicrobial activity of novel triazoles, morpholines and thiosemicarbazones. METHODS Compounds were synthesized using 2,4-Dihydroxyacetophenone and 4-hydroxybenzaldehyde as starting materials. The antimicrobial activity of these compounds against bacteria and yeast was evaluated by the broth microdilution method. RESULTS The proposed route for synthesis gave high to moderate yields, moreover these compounds were successfully characterized by 1H NMR, 13C NMR and LC-MS. Antimicrobial testing indicated that the thiosemicarbazone and morphine derivatives had the best antimicrobial activity against the microorganisms tested with minimum inhibitory concentrations (MIC) between 0.29 and 5.30 µM. Thiosemicarbazone derivative (12) was able to inhibit the growth of C. tropicalis, with minimum fungicidal concentration (MFC) of 0.55 µM. In addition, this compound was active against E. coli, S. aureus and S. epidermidis, with MIC values ranging from 0.29 to 1.11 µM. Moreover, the morpholine derivative (15) had an MIC value of 0.83 µM against C. albicans and E. coli. CONCLUSION We have efficiently synthesized a series of eleven novel triazoles, thiosemicarbazones and morpholine derivatives using 2,4-Dihydroxyacetophenone and 4-hydroxybenzaldehyde as starting materials. Thiosemicarbazone derivative (12) showed promising antifungal and antibacterial activity and these findings suggest that this compound can be used as scaffolds to design new antimicrobial drugs.
Collapse
Affiliation(s)
- Felipe R S Santos
- Laboratorio de Sintese Organica e Nanoestruturas, Universidade Federal de Sao Joao del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - Jéssica T Andrade
- Laboratorio de Microbiologia, Universidade Federal de Sao Joao del- Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - Carla D F Sousa
- Laboratorio de Microbiologia, Universidade Federal de Sao Joao del- Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - Joice S Fernandes
- Laboratorio de Sintese Organica e Nanoestruturas, Universidade Federal de Sao Joao del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - Lucas F Carmo
- Laboratorio de Sintese Organica e Nanoestruturas, Universidade Federal de Sao Joao del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - Marcelo G F Araújo
- Laboratorio de Farmacologia, Universidade Federal de Sao Joao del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - Jaqueline M S Ferreira
- Laboratorio de Microbiologia, Universidade Federal de Sao Joao del- Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| | - José A F P Villar
- Laboratorio de Sintese Organica e Nanoestruturas, Universidade Federal de Sao Joao del-Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, 35501-296, Brazil
| |
Collapse
|
8
|
Chen YM, Su WC, Li C, Shi Y, Chen QX, Zheng J, Tang DL, Chen SM, Wang Q. Anti-melanogenesis of novel kojic acid derivatives in B16F10 cells and zebrafish. Int J Biol Macromol 2019; 123:723-731. [DOI: 10.1016/j.ijbiomac.2018.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 01/20/2023]
|
9
|
Enzymatic Synthesis of Lipophilic Caffeoyl Lipids Using Soybean Oil as the Novel Acceptor. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0215-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|