1
|
Wan X, SunKang Y, Chen Y, Zhang Z, Gou H, Xue Y, Wang C, Wei Y, Yang Y. Co-expression of endoglucanase and cellobiohydrolase from yak rumen in lactic acid bacteria and its preliminary application in whole-plant corn silage fermentation. Front Microbiol 2024; 15:1442797. [PMID: 39355421 PMCID: PMC11443342 DOI: 10.3389/fmicb.2024.1442797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/22/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Endoglucanase (EG) and cellobiohydrolase (CBH) which produced by microorganisms, have been widely used in industrial applications. Methods In order to construct recombinant bacteria that produce high activity EG and CBH, in this study, eg (endoglucanase) and cbh (cellobiohydrolase) were cloned from the rumen microbial genome of yak and subsequently expressed independently and co-expressed within Lactococcus lactis NZ9000 (L. lactis NZ9000). Results The recombinant strains L. lactis NZ9000/pMG36e-usp45-cbh (L. lactis-cbh), L. lactis NZ9000/pMG36e-usp45-eg (L. lactis-eg), and L. lactis NZ9000/pMG36e-usp45-eg-usp45-cbh (L. lactis-eg-cbh) were successfully constructed and demonstrated the ability to secrete EG, CBH, and EG-CBH. The sodium carboxymethyl cellulose activity of the recombinant enzyme EG was the highest, and the regenerated amorphous cellulose (RAC) was the specific substrate of the recombinant enzyme CBH, and EG-CBH. The optimum reaction temperature of the recombinant enzyme CBH was 60°C, while the recombinant enzymes EG and EG-CBH were tolerant to higher temperatures (80°C). The optimum reaction pH of EG, CBH, and EG-CBH was 6.0. Mn2+, Fe2+, Cu2+, and Co2+ could promote the activity of CBH. Similarly, Fe2+, Ba2+, and higher concentrations of Ca2+, Cu2+, and Co2+ could promote the activity of EG-CBH. The addition of engineered strains to whole-plant corn silage improved the nutritional quality of the feed, with the lowest pH, acid detergent fiber (ADF), and neutral detergent fiber (NDF) contents observed in silage from the L. lactis-eg group (p < 0.05), and the lowest ammonia nitrogen (NH3-N), and highest lactic acid (LA) and crude protein (CP) contents in silage from the L. lactis-eg + L. lactis-cbh group (p < 0.05), while the silage quality in the L. lactis-cbh group was not satisfactory. Discussion Consequently, the recombinant strains L. lactis-cbh, L. lactis-eg, and L. lactis-eg-cbh were successfully constructed, which could successfully expressed EG, CBH, and EG-CBH. L. lactis-eg promoted silage fermentation by degrading cellulose to produce sugar, enabling the secretory expression of EG, CBH, and EG-CBH for potential industrial applications in cellulose degradation.
Collapse
Affiliation(s)
- Xuerui Wan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yongjie SunKang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yijun Chen
- The Beijing Municipal Animal Husbandry Station, Beijing, China
| | - Zhao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Huitian Gou
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yu Xue
- Shanxi Agricultural University, Taigu, Shanxi, China
| | - Chuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yaqin Wei
- Center for Anaerobic Microbes, Institute of Biology Gansu Academy of Sciences, Lanzhou, China
| | - Yuze Yang
- The Beijing Municipal Animal Husbandry Station, Beijing, China
| |
Collapse
|
2
|
Mu D, Li P, Ma T, Wei D, Montalbán-López M, Ai Y, Wu X, Wang Y, Li X, Li X. Advances in the understanding of the production, modification and applications of xylanases in the food industry. Enzyme Microb Technol 2024; 179:110473. [PMID: 38917734 DOI: 10.1016/j.enzmictec.2024.110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Xylanases have broad applications in the food industry to decompose the complex carbohydrate xylan. This is applicable to enhance juice clarity, improve dough softness, or reduce beer turbidity. It can also be used to produce prebiotics and increase the nutritional value in foodstuff. However, the low yield and poor stability of most natural xylanases hinders their further applications. Therefore, it is imperative to explore higher-quality xylanases to address the potential challenges that appear in the food industry and to comprehensively improve the production, modification, and utilization of xylanases. Xylanases, due to their various sources, exhibit diverse characteristics that affect production and activity. Most fungi are suitable for solid-state fermentation to produce xylanases, but in liquid fermentation, microbial metabolism is more vigorous, resulting in higher yield. Fungi produce higher xylanase activity, but bacterial xylanases perform better than fungal ones under certain extreme conditions (high temperature, extreme pH). Gene and protein engineering technology helps to improve the production efficiency of xylanases and enhances their thermal stability and catalytic properties.
Collapse
Affiliation(s)
- Dongdong Mu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China.
| | - Penglong Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Tiange Ma
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Dehua Wei
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Manuel Montalbán-López
- Institute of Biotechnology and Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Yaqian Ai
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xuefeng Wu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yifeng Wang
- Anhui Yunshang Cultural Tourism Development Group, Anqing 246600, China
| | - Xu Li
- Anhui Wanyue Xinhe Project Management Company Limited, Anqing 246600, China
| | - Xingjiang Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China.
| |
Collapse
|
3
|
Wang C, Yang Y, Ma C, Sunkang Y, Tang S, Zhang Z, Wan X, Wei Y. Expression of β-Glucosidases from the Yak Rumen in Lactic Acid Bacteria: A Genetic Engineering Approach. Microorganisms 2023; 11:1387. [PMID: 37374889 DOI: 10.3390/microorganisms11061387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
β-glucosidase derived from microorganisms has wide industrial applications. In order to generate genetically engineered bacteria with high-efficiency β-glucosidase, in this study two subunits (bglA and bglB) of β-glucosidase obtained from the yak rumen were expressed as independent proteins and fused proteins in lactic acid bacteria (Lactobacillus lactis NZ9000). The engineered strains L. lactis NZ9000/pMG36e-usp45-bglA, L. lactis NZ9000/pMG36e-usp45-bglB, and L. lactis NZ9000/pMG36e-usp45-bglA-usp45-bglB were successfully constructed. These bacteria showed the secretory expression of BglA, BglB, and Bgl, respectively. The molecular weights of BglA, BglB, and Bgl were about 55 kDa, 55 kDa, and 75 kDa, respectively. The enzyme activity of Bgl was significantly higher (p < 0.05) than that of BglA and BglB for substrates such as regenerated amorphous cellulose (RAC), sodium carboxymethyl cellulose (CMC-Na), desiccated cotton, microcrystalline cellulose, filter paper, and 1% salicin. Moreover, 1% salicin appeared to be the most suitable substrate for these three recombinant proteins. The optimum reaction temperatures and pH values for these three recombinant enzymes were 50 °C and 7.0, respectively. In subsequent studies using 1% salicin as the substrate, the enzymatic activities of BglA, BglB, and Bgl were found to be 2.09 U/mL, 2.36 U/mL, and 9.4 U/mL, respectively. The enzyme kinetic parameters (Vmax, Km, Kcat, and Kcat/Km) of the three recombinant strains were analyzed using 1% salicin as the substrate at 50 °C and pH 7.0, respectively. Under conditions of increased K+ and Fe2+ concentrations, the Bgl enzyme activity was significantly higher (p < 0.05) than the BglA and BglB enzyme activity. However, under conditions of increased Zn2+, Hg2+, and Tween20 concentrations, the Bgl enzyme activity was significantly lower (p < 0.05) than the BglA and BglB enzyme activity. Overall, the engineered lactic acid bacteria strains generated in this study could efficiently hydrolyze cellulose, laying the foundation for the industrial application of β-glucosidase.
Collapse
Affiliation(s)
- Chuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Center for Anaerobic Microbes, Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, China
| | - Yuze Yang
- Beijing Animal Husbandry Station, Beijing 100107, China
| | - Chunjuan Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongjie Sunkang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaoqing Tang
- Beijing Animal Husbandry Station, Beijing 100107, China
| | - Zhao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuerui Wan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaqin Wei
- Center for Anaerobic Microbes, Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Yang X, Zhao L, Chen Q, Wang N, Shi K, Liu S. Functional Verification of the Citrate Transporter Gene in a Wine Lactic Acid Bacterium, Lactiplantibacillus plantarum. Front Bioeng Biotechnol 2022; 10:894870. [PMID: 35615477 PMCID: PMC9124760 DOI: 10.3389/fbioe.2022.894870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Organic acid metabolism by lactic acid bacteria plays a significant role in improving wine quality. During this process, the uptake of extracellular organic acids by the transporters is the first rate-limiting step. However, up to now, there is very little published research on the functional verification of organic acid transporter genes in wine lactic acid bacteria. In this study, a predicted citrate transporter gene JKL54_04345 (citP) by protein homology analysis was knocked out using a CRISPR/Cas9-based gene-editing system, and then complemented using the modified pMG36e vectors in a major wine lactic acid bacterium, Lactiplantibacillus plantarum XJ25, to verify its function in citrate metabolism for the first time. The results showed that the gene knockout mutant XJ25-ΔcitP lost the ability to utilize citric acid, while the gene complement mutant XJ25-ΔcitP-pMG36ek11-citP fully recovered the ability of citric acid utilization. Meanwhile, citP knockout and complement barely affected the utilization of l-malic acid. These indicated that citP in L. plantarum functioned as a citrate transporter and was the only gene responsible for citrate transporter. In addition, two modified plasmid vectors used for gene supplement in L. plantarum showed distinct transcription efficiency. The transcription efficiency of citP in XJ25-ΔcitP-pMG36ek11-citP mutant was 4.01 times higher than that in XJ25-ΔcitP-pMG36ek-citP mutant, and the utilization rate of citric acid in the former was 3.95 times higher than that in the latter, indicating that pMG36ek11 can be used as a high-level expression vector in lactic acid bacteria.
Collapse
Affiliation(s)
- Xiangke Yang
- College of Enology, Northwest A&F University, Yangling, China
- College of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Lili Zhao
- College of Enology, Northwest A&F University, Yangling, China
| | - Qiling Chen
- College of Enology, Northwest A&F University, Yangling, China
| | - Nan Wang
- College of Enology, Northwest A&F University, Yangling, China
| | - Kan Shi
- College of Enology, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Yangling, China
- Heyang Experimental and Demonstrational Stations for Grape, Northwest A&F University, Weinan, China
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yongning, China
- *Correspondence: Kan Shi, ; Shuwen Liu,
| | - Shuwen Liu
- College of Enology, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Yangling, China
- Heyang Experimental and Demonstrational Stations for Grape, Northwest A&F University, Weinan, China
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yongning, China
- *Correspondence: Kan Shi, ; Shuwen Liu,
| |
Collapse
|
5
|
Dorau R, Liu J, Solem C, Jensen PR. Metabolic Engineering of Lactic Acid Bacteria. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Mazzoli R. Metabolic engineering strategies for consolidated production of lactic acid from lignocellulosic biomass. Biotechnol Appl Biochem 2020; 67:61-72. [DOI: 10.1002/bab.1869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Roberto Mazzoli
- Structural and Functional BiochemistryLaboratory of Proteomics and Metabolic Engineering of ProkaryotesDepartment of Life Sciences and Systems BiologyUniversity of Torino Torino Italy
| |
Collapse
|
7
|
Tarraran L, Mazzoli R. Alternative strategies for lignocellulose fermentation through lactic acid bacteria: the state of the art and perspectives. FEMS Microbiol Lett 2019; 365:4995910. [PMID: 30007320 DOI: 10.1093/femsle/fny126] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Lactic acid bacteria (LAB) have a long history in industrial processes as food starters and biocontrol agents, and also as producers of high-value compounds. Lactic acid, their main product, is among the most requested chemicals because of its multiple applications, including the synthesis of biodegradable plastic polymers. Moreover, LAB are attractive candidates for the production of ethanol, polyhydroalkanoates, sweeteners and exopolysaccharides. LAB generally have complex nutritional requirements. Furthermore, they cannot directly ferment inexpensive feedstocks such as lignocellulose. This significantly increases the cost of LAB fermentation and hinders its application in the production of high volumes of low-cost chemicals. Different strategies have been explored to extend LAB fermentation to lignocellulosic biomass. Fermentation of lignocellulose hydrolysates by LAB has been frequently reported and is the most mature technology. However, current economic constraints of this strategy have driven research for alternative approaches. Co-cultivation of LAB with native cellulolytic microorganisms may reduce the high cost of exogenous cellulase supplementation. Special attention is given in this review to the construction of recombinant cellulolytic LAB by metabolic engineering, which may generate strains able to directly ferment plant biomass. The state of the art of these strategies is illustrated along with perspectives of their applications to industrial second generation biorefinery processes.
Collapse
Affiliation(s)
- Loredana Tarraran
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
8
|
Liu Q, Li J, Zhao J, Wu J, Shao T. Enhancement of lignocellulosic degradation in high-moisture alfalfa via anaerobic bioprocess of engineered Lactococcus lactis with the function of secreting cellulase. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:88. [PMID: 31015862 PMCID: PMC6469111 DOI: 10.1186/s13068-019-1429-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Butyric fermentation and a substantial loss of dry matter (DM) often occur in alfalfa silage during the rainy season, which is not conducive to subsequent biofuel production. Currently, there have been negative effects on the combination of cellulases and lactic acid bacteria (LAB) on processing high-moisture alfalfa silage; however, transgenically engineered LAB strains that secrete cellulase have been proposed as an alternative approach to avoid the above problem. The objective of the present study was to construct engineered Lactococcus lactis strains with high-efficiency secretory-expressing cellulase genes from Trichoderma reesei and to investigate the effects of the combination of transgenically engineered L. lactis strains HT1/pMG36e-usp45-bgl1, HT1/pMG36e-usp45-cbh2, and HT1/pMG36e-usp45-egl3 (HT2) on fermentation quality, structural carbohydrate degradability and nonstructural carbohydrate fermentation kinetics of high-moisture alfalfa silage treated without additive as a negative control (Control), or/and with cellulase (EN), wild-type L. lactis subsp. lactis MG1363 (HT1) and the combination of HT1 and EN (HT1 + EN) as positive additive controls. RESULTS Engineered L. lactis strains were successfully constructed and efficiently secreted endoglucanase (1118 mU/mL), cellobiohydrolase (222 mU/mL), and β-glucosidase (131 mU/mL) and had high filter paper activity (236 mU/mL). Ensiling experiments verified that HT2 obtained the highest fermentation quality score (83.6) and most efficiently processed high-moisture alfalfa silage, demonstrated by a low pH (4.49) and ammonia-N content (106 g/kg nitrogen) and a high lactic acid content (67.1 g/kg DM) and without butyric acid. Change curves of structural carbohydrates revealed that HT2 degraded more lignocelluloses, demonstrated by the lowest contents of neutral detergent fibre, acid detergent fibre, cellulose and hemicellulose after ensiling for 60 days. Kinetic analysis showed that the most residual water-soluble carbohydrates, glucose, fructose and xylose generated by lignocellulose degradation were produced by HT2, followed by HT1 + EN. The HT2-treated silages had the highest DM recovery, had the fewest Clostridia spores, emitted a fragrance and were not sticky. CONCLUSION HT2 improved the conversion of lignocellulose to sugars and processed high-moisture alfalfa silage efficiently. This is a novel strategy that can be used to enhance lignocellulosic degradation in high-moisture alfalfa via a bioprocess with transgenically engineered L. lactis strains, which could enhance the development of alfalfa as a biomass feedstock and promote second-generation biofuel development in the rainy season.
Collapse
Affiliation(s)
- Qinhua Liu
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China
| | - Jingxing Wu
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China
| |
Collapse
|