1
|
Li S, Wang N, Li X. Enhancement of poly‑γ‑L‑diaminobutanoic acid production in Bacillus pumilus by repeated pH shocks. Bioprocess Biosyst Eng 2024; 47:1547-1554. [PMID: 38904716 DOI: 10.1007/s00449-024-03050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
This study investigated the effect of pH on poly-γ-L-diaminobutanoic acid (γ-PAB) production by Bacillus pumilus in batch fermentation. In the natural fermentation where pH was not controlled, pH decreased from initial 7.0 to 3.0 in 18 h and γ-PAB production was 428.6 mg/L. In the pH-controlled fermentation, B. pumilus tended to proliferation at higher pH, while γ-PAB synthesis was favorable at lower pH, in which the optimal pH for γ-PAB production was 4.2, and γ-PAB yield reached 2284.5 mg/L. Adopting a pH shock strategy which lasted 9 h in the pre-fermentation phase, biomass (OD600) and γ-PAB yield of B. pumilus were obtained as 61.3 and 2794.6 mg/L, respectively, which were 10.8% and 22.4% higher than those in batch fermentation without pH shock. Subsequent fermentation of repeated pH shocks showed that a further higher productivity could be achieved, in which the final OD600 reached 65.1, and γ-PAB production reached as high as 3482.3 mg/L, which were increased by 6.2% and 17.1% compared with those in single pH shock, respectively. This study demonstrated that B. pumilus can synthesize more γ-PAB at suboptimal pH and provided a novel approach to regulate γ-PAB synthesis.
Collapse
Affiliation(s)
- Shu Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| | - Nan Wang
- Food and Drug Inspection, Testing Institute at Weihai, Weihai, 264210, Shandong, China
| | - Xiaoting Li
- Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, China
| |
Collapse
|
2
|
Wang M, Li H, Li J, Zhang W, Zhang J. Streptomyces Strains and Their Metabolites for Biocontrol of Phytopathogens in Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2077-2088. [PMID: 38230633 DOI: 10.1021/acs.jafc.3c08265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Sustainable agriculture is increasingly linked to biological pesticides as alternatives to agro-chemicals. Streptomyces species suppress plant diseases through their unique traits and numerous metabolites. Although many Streptomyces strains have been developed into commercial products, their roles in the biocontrol of phytopathogens and mechanisms of functional metabolite synthesis remain poorly understood. In this review, biocontrol of plant diseases by Streptomyces is summarized on the basis of classification of fungal and bacterial diseases and secondary metabolites produced by Streptomyces that act on phytopathogenic microorganisms are discussed. The associated non-ribosomal peptide synthetases and polyketide synthetases responsible for biosynthesis of these secondary metabolites are also investigated, and advances in fermentation of Streptomyces are described. Finally, the need to develop precise and effective biocontrol methods for plant diseases is highlighted.
Collapse
Affiliation(s)
- Mingxuan Wang
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Honglin Li
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jing Li
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Wujin Zhang
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jianguo Zhang
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
3
|
Yang H, Zhu D, Kai L, Wang L, Zhang H, Zhang J, Chen X. Engineering Streptomyces albulus to enhance ε-poly-L-lysine production by introducing a polyphosphate kinase-mediated ATP regeneration system. Microb Cell Fact 2023; 22:51. [PMID: 36918890 PMCID: PMC10012588 DOI: 10.1186/s12934-023-02057-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND ε-Poly-L-lysine (ε-PL) is a natural and safe food preservative that is mainly produced by filamentous and aerobic bacteria Streptomyces albulus. During ε-PL biosynthesis, a large amount of ATP is used for the polymerization of L-lysine. A shortage of intracellular ATP is one of the major factors limiting the increase in ε-PL production. In previous studies, researchers have mainly tried to increase the oxygen supply to enhance intracellular ATP levels to improve ε-PL production, which can be achieved through the use of two-stage dissolved oxygen control, oxygen carriers, heterologous expression of hemoglobin, and supplementation with auxiliary energy substrates. However, the enhancement of the intracellular ATP supply by constructing an ATP regeneration system has not yet been considered. RESULTS In this study, a polyphosphate kinase (PPK)-mediated ATP regeneration system was developed and introduced into S. albulus to successfully improve ε-PL production. First, polyP:AMP phosphotransferase (PAP) from Acinetobacter johnsonii was selected for catalyzing the conversion of AMP into ADP through an in vivo test. Moreover, three PPKs from different microbes were compared by in vitro and in vivo studies with respect to catalytic activity and polyphosphate (polyP) preference, and PPK2Bcg from Corynebacterium glutamicum was used for catalyzing the conversion of ADP into ATP. As a result, a recombinant strain PL05 carrying coexpressed pap and ppk2Bcg for catalyzing the conversion of AMP into ATP was constructed. ε-PL production of 2.34 g/L was achieved in shake-flask fermentation, which was an increase of 21.24% compared with S. albulus WG608; intracellular ATP was also increased by 71.56%. In addition, we attempted to develop a dynamic ATP regulation route, but the result was not as expected. Finally, the conditions of polyP6 addition were optimized in batch and fed-batch fermentations, and the maximum ε-PL production of strain PL05 in a 5-L fermenter was 59.25 g/L by fed-batch fermentation, which is the highest ε-PL production reported in genetically engineered strains. CONCLUSIONS In this study, we proposed and developed a PPK-mediated ATP regeneration system in S. albulus for the first time and significantly enhanced ε-PL production. The study provides an efficient approach to improve the production of not only ε-PL but also other ATP-driven metabolites.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Daojun Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Lang Kai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Liang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Hongjian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jianhua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xusheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
4
|
Physiological analysis of the improved ε-polylysine production induced by reactive oxygen species. Appl Microbiol Biotechnol 2023; 107:881-896. [PMID: 36585512 DOI: 10.1007/s00253-022-12343-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Epsilon-poly-L-lysine (ε-PL) is produced by Streptomyces species in acidic and aerobic conditions, which inevitably induces rapid generation of reactive oxygen species (ROS). The devastating effects of ROS on biomolecules and cell vitality have been well-studied, while the positive effects of ROS are rarely reported. RESULTS In this study, we found that a proper dose of intracellular ROS (about 3.3 μmol H2O2 /g DCW) could induce a physiological modification to promote the ε-PL production (from 1.2 to 1.5 g/L). It resulted in larger sizes of colony and mycelial pellets as well as vibrant, aggregated, and more robust mycelia, which were of high capability of ROS detoxication. Physiological studies showed that appropriate doses of ROS activated the metabolism of the pentose phosphate pathway at both transcriptional and enzymatic levels, which was beneficial for biomass accumulation. The biosynthesis of lysine was also promoted in terms of transcriptional regulatory overexpression, increased transcription and enzymatic activity of key genes, larger pools of metabolites in the TCA cycle, replenishment pathway, and diaminoheptanedioic acid pathway. In addition, energy provision was ensured by activated metabolism of the TCA cycle, a larger pool of NADH, and higher activity of the electron transport system. Increased transcription of HrdD and pls further accelerated the ε-PL biosynthesis. SIGNIFICANCE These results indicated that ROS at proper intracellular dose could act as an inducing signal to activate the ε-PL biosynthesis, which laid a foundation for further process regulation to maintain optimal ROS dose in industrial ε-PL production and was of theoretical and practical significance. KEY POINTS • A proper dose of intracellular ROS positively influences the ε-PL production. • Proper dose of ROS enhanced the mycelial activity and antioxidative capability. • ROS increased lysine synthesis metabolism, energy provision and pls expression.
Collapse
|
5
|
Transcriptome and Metabolome Analysis Revealing the Improved ε-Poly-l-Lysine Production Induced by a Microbial Call from Botrytis cinerea. Appl Environ Microbiol 2022; 88:e0095222. [PMID: 36190251 PMCID: PMC9599581 DOI: 10.1128/aem.00952-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ε-Poly-l-lysine (ε-PL) is a wide-spectrum antimicrobial agent, while its biosynthesis-inducing signals are rarely reported. This study found that Botrytis cinerea extracts could act as a microbial call to induce a physiological modification of Streptomyces albulus for ε-PL efficient biosynthesis and thereby resulted in ε-PL production (34.2 g/liter) 1.34-fold higher than control. The elicitors could be primary isolated by ethanol and butanol extraction, which resulted in more vibrant, aggregate and stronger mycelia. The elicitor-derived physiological changes focused on three aspects: ε-PL synthase, energy metabolism, and lysine biosynthesis. After elicitor addition, upregulated sigma factor hrdD and improved transcription and expression of pls directly contributed to the high ε-PL productivity; upregulated genes in tricarboxylic acid (TCA) cycle and energy metabolism promoted activities of citrate synthase and the electron transport system; in addition, pool enlargements of ATP, ADP, and NADH guaranteed the ATP provision for ε-PL assembly. Lysine biosynthesis was also increased based on enhancements of gene transcription, key enzyme activities, and intracellular metabolite pools related to carbon source utilization, the Embden-Meyerhof pathway (EMP), the diaminopimelic acid pathway (DAP), and the replenishment pathway. Interestingly, the elicitors stimulated the gene transcription for the quorum-sensing system and resulted in upregulation of genes for other antibiotic production. These results indicated that the Botrytis cinerea could produce inducing signals to change the Streptomyces mycelial physiology and accelerate the ε-PL biosynthesis. IMPORTANCE This work identified the role of microbial elicitors on ε-PL production and disclosed the underlying mechanism through analysis of gene transcription, key enzyme activities, and intracellular metabolite pools, including transcriptome and metabolome analysis. It was the first report for the inducing effects of the "microbial call" to Streptomyces albulus and ε-PL biosynthesis, and these elicitors could be potentially obtained from decayed fruits infected by Botrytis cinerea; hence, this may be a way of turning a biohazard into bioproduct wealth. This study provided a reference for application of microbial signals in secondary metabolite production, which is of theoretical and practical significance in industrial antibiotic production.
Collapse
|
6
|
Li S, Mao Y, Zhang L, Wang M, Meng J, Liu X, Bai Y, Guo Y. Recent advances in microbial ε-poly-L-lysine fermentation and its diverse applications. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:65. [PMID: 35710433 PMCID: PMC9205021 DOI: 10.1186/s13068-022-02166-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The naturally occurring homo-polyamide biopolymer, ε-poly-L-lysine (ε-PL) consists of 25-35 L-lysine residues with amide linkages between α-carboxyl groups and ε-amino groups. ɛ-PL exhibits several useful properties because of its unusual structure, such as biodegradability, water solubility, no human toxicity, and broad-spectrum antibacterial activities; it is widely applied in the fields of food, medicine, clinical chemistry and electronics. However, current industrial production of ε-PL is only performed in a few countries. Based on an analysis of the physiological characteristics of ε-PL fermentation, current advances that enhance ε-PL fermentation, from strain improvement to product isolation are systematically reviewed, focusing on: (1) elucidating the metabolic pathway and regulatory mechanism of ε-PL synthesis; (2) enhancing biosynthetic performance through mutagenesis, fermentation optimization and metabolic engineering; and (3) understanding and improving the biological activity and functional properties of ε-PL. Finally, perspectives on engineering and exploiting ε-PL as a source material for the production of various advanced materials are also discussed, providing scientific guidelines for researchers to further improve the ε-PL fermentation process.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yunren Mao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Lifei Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Miao Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jinhao Meng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yunxia Bai
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, 530004, China.
| |
Collapse
|
7
|
Biotechnological production and application of epsilon-poly-L-lysine (ε-PL): biosynthesis and its metabolic regulation. World J Microbiol Biotechnol 2022; 38:123. [PMID: 35637397 DOI: 10.1007/s11274-022-03304-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Epsilon-poly-L-lysine (ε-PL) is an unusual biopolymer composed of L-lysine produced by several microorganisms, especially by the genus Streptomyces. Due to its excellent antimicrobial activity, good water solubility, high safety, and biodegradable nature, ε-PL with a GRAS status has been widely used in food and pharmaceutical industries. In the past years, studies have focused on the biotechnological production of ɛ-PL, the biosynthetic mechanism of microbial ɛ-PL, and its application. To provide new perspectives from recent advances, the review introduced the methods for the isolation of ɛ-PL producing strains and the biosynthetic mechanism of microbial ɛ-PL. We summarized the strategies for the improvement of ɛ-PL producing strains, including physical and chemical mutagenesis, ribosome engineering and gene engineering, and compared the different metabolic regulation strategies for improving ɛ-PL production, including medium optimization, nutrient supply, pH control, and dissolved oxygen control. Then, the downstream purification methods of ɛ-PL and its recent applications in food and medicine industries were introduced. Finally, we also proposed the potential challenges and the perspectives for the production of ε-PL.
Collapse
|
8
|
Efficient ε-poly-L-lysine production by Streptomyces albulus based on a dynamic pH-regulation strategy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Wang M, Rong C. Poly(ε-L-lysine) and poly(L-diaminopropionic acid) co-produced from spent mushroom substrate fermentation: potential use as food preservatives. Bioengineered 2022; 13:5892-5902. [PMID: 35188864 PMCID: PMC8973980 DOI: 10.1080/21655979.2022.2040876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly(ε-L-lysine) and poly(L-diaminopropionic acid) are valuable homopoly (amino acids) with antimicrobial properties and mainly produced in submerged fermentation. In this study, we investigated their co-production using waste biomass and spent mushroom substrate in solid-state fermentation. Simultaneous production of poly(L-diaminopropionic acid) and poly(ε-L-lysine) was achieved in a single fermentation process using pearl oyster mushroom residues as substrate, with the supplement of glycerol and corn steep liquor. After optimization of the fermentation parameters, the maximum yield of poly(ε-L-lysine) and poly(L-diaminopropionic acid) reached 51.4 mg/g substrate and 25.4 mg/g substrate, respectively. The optimal fermentation conditions were 70% initial moisture content, pH of 6.5, 30°C and an inoculum size of 14%. Furthermore, the fermentation time was reduced from 8 days to 6 days using repeated-batch solid-state fermentation. Finally, the antimicrobial effects of poly(L-diaminopropionic acid) and poly(ε-L-lysine) were evaluated in freshly pressed grape juice, which indicated tremendous potential of this mixture in its use as biological preservative.
Collapse
Affiliation(s)
- Mingxuan Wang
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, Yangpu District, China
| | - Chunchi Rong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing,Gulou, China
| |
Collapse
|
10
|
Zong G, Fu J, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. Use of elicitors to enhance or activate the antibiotic production in streptomyces. Crit Rev Biotechnol 2021; 42:1260-1283. [PMID: 34706600 DOI: 10.1080/07388551.2021.1987856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Streptomyces is the largest and most significant genus of Actinobacteria, comprising 961 species. These Gram-positive bacteria produce many versatile and important bioactive compounds; of these, antibiotics, specifically the enhancement or activation of their production, have received extensive research attention. Recently, various biotic and abiotic elicitors have been reported to modify the antibiotic metabolism of Streptomyces, which promotes the production of new antibiotics and bioactive metabolites for improvement in the yields of endogenous products. However, some elicitors that obviously contribute to secondary metabolite production have not yet received sufficient attention. In this study, we have reviewed the functions and mechanisms of chemicals, novel microbial metabolic elicitors, microbial interactions, enzymes, enzyme inhibitors, environmental factors, and novel combination methods regarding antibiotic production in Streptomyces. This review has aimed to identify potentially valuable elicitors for stimulating the production of latent antibiotics or enhancing the synthesis of subsistent antibiotics in Streptomyces. Future applications and challenges in the discovery of new antibiotics and enhancement of existing antibiotic production using elicitors are discussed.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Wang L, Zhang C, Zhang J, Rao Z, Xu X, Mao Z, Chen X. Epsilon-poly-L-lysine: Recent Advances in Biomanufacturing and Applications. Front Bioeng Biotechnol 2021; 9:748976. [PMID: 34650962 PMCID: PMC8506220 DOI: 10.3389/fbioe.2021.748976] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
ε-poly-L-lysine (ε-PL) is a naturally occurring poly(amino acid) of varying polymerization degree, which possesses excellent antimicrobial activity and has been widely used in food and pharmaceutical industries. To provide new perspectives from recent advances, this review compares several conventional and advanced strategies for the discovery of wild strains and development of high-producing strains, including isolation and culture-based traditional methods as well as genome mining and directed evolution. We also summarize process engineering approaches for improving production, including optimization of environmental conditions and utilization of industrial waste. Then, efficient downstream purification methods are described, including their drawbacks, followed by the brief introductions of proposed antimicrobial mechanisms of ε-PL and its recent applications. Finally, we discuss persistent challenges and future perspectives for the commercialization of ε-PL.
Collapse
Affiliation(s)
- Liang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chongyang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianhua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhonggui Mao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xusheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Ji L, Wang J, Luo Q, Ding Q, Tang W, Chen X, Liu L. Enhancing L-malate production of Aspergillus oryzae by nitrogen regulation strategy. Appl Microbiol Biotechnol 2021; 105:3101-3113. [PMID: 33818672 DOI: 10.1007/s00253-021-11149-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 12/01/2022]
Abstract
Regulating morphology engineering and fermentation of Aspergillus oryzae makes it possible to increase the titer of L-malate. However, the existing L-malate-producing strain has limited L-malate production capacity and the fermentation process is insufficiently mature, which cannot meet the needs of industrial L-malate production. To further increase the L-malate production capacity of A. oryzae, we screened out a mutant strain (FMME-S-38) that produced 79.8 g/L L-malate in 250-mL shake flasks, using a newly developed screening system based on colony morphology on the plate. We further compared the extracellular nitrogen (N1) and intracellular nitrogen (N2) contents of the control and mutant strain (FMME-S-38) to determine the relationship between the curve of nitrogen content (N1 and N2) and the L-malate titer. This correlation was then used to optimize the conditions for developing a novel nitrogen supply strategy (initial tryptone concentration of 6.5 g/L and feeding with 3 g/L tryptone at 24 h). Fermentation in a 7.5-L fermentor under the optimized conditions further increased the titer and productivity of L-malate to 143.3 g/L and 1.19 g/L/h, respectively, corresponding to 164.9 g/L and 1.14 g/L/h in a 30-L fermentor. This nitrogen regulation-based strategy cannot only enhance industrial-scale L-malate production but also has generalizability and the potential to increase the production of similar metabolites.Key Points• Construction of a new screening system based on colony morphology on the plate.• A novel nitrogen regulation strategy used to regulate the production of L-malate.• A nitrogen supply strategy used to maximize the production of L-malate.
Collapse
Affiliation(s)
- Lihao Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ju Wang
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Qiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenxiu Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
13
|
Wang J, Gao C, Chen X, Liu L. Expanding the lysine industry: biotechnological production of l-lysine and its derivatives. ADVANCES IN APPLIED MICROBIOLOGY 2021; 115:1-33. [PMID: 34140131 DOI: 10.1016/bs.aambs.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
l-lysine is an essential amino acid that contains various functional groups including α-amino, ω-amino, and α-carboxyl groups, exhibiting high reaction potential. The derivatization of these functional groups produces a series of value-added chemicals, such as cadaverine, glutarate, and d-lysine, that are widely applied in the chemical synthesis, cosmetics, food, and pharmaceutical industries. Here, we review recent advances in the biotechnological production of l-lysine and its derivatives and expatiate key technological strategies. Furthermore, we also discuss the existing challenges and potential strategies for more efficient production of these chemicals.
Collapse
Affiliation(s)
- Jiaping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.
| |
Collapse
|
14
|
Wang A, Tian W, Cheng L, Xu Y, Wang X, Qin J, Yu B. Enhanced ε-Poly-L-Lysine Production by the Synergistic Effect of ε-Poly-L-Lysine Synthetase Overexpression and Citrate in Streptomyces albulus. Front Bioeng Biotechnol 2020; 8:288. [PMID: 32391338 PMCID: PMC7188835 DOI: 10.3389/fbioe.2020.00288] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
ε-Poly-L-lysine (ε-PL) is a natural amino acid polymer produced by microbial fermentation. It has been mainly used as a preservative in the food and cosmetics industries, as a drug carrier in medicines, and as a gene carrier in gene therapy. ε-PL synthase is the key enzyme responsible for the polymerization of L-lysine to form ε-PL. In this study, the ε-PL synthase gene was overexpressed in Streptomyces albulus CICC 11022 by using the kasOp∗ promoter and the ribosome binding site from the capsid protein of phage ϕC31, which resulted in a genetically engineered strain Q-PL2. The titers of ε-PL produced by Q-PL2 were 88.2% ± 8.3% higher than that produced by the wild strain in shake flask fermentation. With the synergistic effect of 2 g/L sodium citrate, the titers of ε-PL produced by Q-PL2 were 211.2% ± 17.4% higher than that produced by the wild strain. In fed-batch fermentations, 20.1 ± 1.3 g/L of ε-PL was produced by S. albulus Q-PL2 in 72 h with a productivity of 6.7 ± 0.4 g/L/day, which was 3.2 ± 0.3-fold of that produced by the wild strain. These results indicate that ε-PL synthase is one of the rate-limiting enzymes in ε-PL synthesis pathway and lays a foundation for further improving the ε-PL production ability of S. albulus by metabolic engineering.
Collapse
Affiliation(s)
- Aixia Wang
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wenzhe Tian
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Youqiang Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiuwen Wang
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiayang Qin
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Understanding high ε-poly-l-lysine production by Streptomyces albulus using pH shock strategy in the level of transcriptomics. ACTA ACUST UNITED AC 2019; 46:1781-1792. [DOI: 10.1007/s10295-019-02240-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Abstract
ε-Poly-l-lysine (ε-PL) is a natural food preservative, which exhibits antimicrobial activity against a wide spectra of microorganisms. The production of ε-PL was significantly enhanced by pH shock in our previous study, but the underlying mechanism is poorly understood. According to transcriptional and physiological analyses in this study, the mprA/B and pepD signal transduction system was first proved to be presented and activated in Streptomyces albulus M-Z18 by pH shock, which positively regulated the transcription of ε-PL synthetase (Pls) gene and enhanced the Pls activity during fermentation. Furthermore, pH shock changed the ratio of unsaturation to saturation fatty acid in the membrane through up-regulating the transcription of fatty acid desaturase genes (SAZ_RS14940, SAZ_RS14945). In addition, pH shock also enhanced the transcription of cytochrome c oxidase (SAZ_RS15070, SAZ_RS15075), ferredoxin reductase (SAZ_RS34975) and iron sulfur protein (SAZ_RS31410) genes, and finally resulted in the improvement of cell respiratory activity. As a result, pH shock was considered to influence a wide range of proteins including regulators, fatty acid desaturase, respiratory chain component, and ATP-binding cassette transporter during fermentation. These combined influences might contribute to enhanced ε-PL productivity with pH shock.
Collapse
|
16
|
Mechanisms of response to pH shock in microbial fermentation. Bioprocess Biosyst Eng 2019; 43:361-372. [PMID: 31650352 DOI: 10.1007/s00449-019-02232-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
The following review highlights pH shock, a novel environmental factor, as a tool for the improvement of fermentation production. The aim of this review is to introduce some recent original studies on the enhancement of microbial fermentation production by pH shock. Another purpose of this review is to improve the understanding of the processes that underlie physiological and genetic differences, which will facilitate future research on the improvement of fermentation production and reveal the associated molecular mechanisms. This understanding will simultaneously promote the application of this strategy to other microbial fermentation systems. Furthermore, improvement of the cellular tolerance of genetically engineered bacteria can also be a new field of research in the future to enhance fermentation production.
Collapse
|
17
|
Pan L, Chen X, Wang K, Mao Z. A temporal transcriptomic dynamics study reveals the reason of enhanced ε-poly-L-lysine production in Streptomyces albulus M-Z18 by pH shock. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|