1
|
Removal process and mechanism of hexavalent chromium by adsorption-coupled reduction with marine-derived Aspergillus niger mycelial pellets. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Bhardwaj N, Kumar B, Agrawal K, Verma P. Current perspective on production and applications of microbial cellulases: a review. BIORESOUR BIOPROCESS 2021; 8:95. [PMID: 38650192 PMCID: PMC10992179 DOI: 10.1186/s40643-021-00447-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
The potential of cellulolytic enzymes has been widely studied and explored for bioconversion processes and plays a key role in various industrial applications. Cellulase, a key enzyme for cellulose-rich waste feedstock-based biorefinery, has increasing demand in various industries, e.g., paper and pulp, juice clarification, etc. Also, there has been constant progress in developing new strategies to enhance its production, such as the application of waste feedstock as the substrate for the production of individual or enzyme cocktails, process parameters control, and genetic manipulations for enzyme production with enhanced yield, efficiency, and specificity. Further, an insight into immobilization techniques has also been presented for improved reusability of cellulase, a critical factor that controls the cost of the enzyme at an industrial scale. In addition, the review also gives an insight into the status of the significant application of cellulase in the industrial sector, with its techno-economic analysis for future applications. The present review gives a complete overview of current perspectives on the production of microbial cellulases as a promising tool to develop a sustainable and greener concept for industrial applications.
Collapse
Affiliation(s)
- Nisha Bhardwaj
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Bikash Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
3
|
Cellulase immobilized by sodium alginate-polyethylene glycol-chitosan for hydrolysis enhancement of microcrystalline cellulose. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Zhang Y, Zhang Y, Song M, Topakas E, Yu Q, Yuan Z, Wang Z, Guo Y. Combining Michaelis-Menten theory and enzyme deactivation reactions for the kinetic study of enzymatic hydrolysis by different pretreated sugarcane bagasse. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Guo R, Zheng X, Wang Y, Yang Y, Ma Y, Zou D, Liu Y. Optimization of Cellulase Immobilization with Sodium Alginate-Polyethylene for Enhancement of Enzymatic Hydrolysis of Microcrystalline Cellulose Using Response Surface Methodology. Appl Biochem Biotechnol 2021; 193:2043-2060. [PMID: 33544365 DOI: 10.1007/s12010-021-03517-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
A novel method of immobilizing cellulase on sodium alginate (SA)-polyethylene glycol (PEG) enabled the cellulase to be used repeatedly. The matrix of the immobilized cellulase was detected and characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. In comparison with SA-immobilized cellulase, the relative enzyme activity and immobilization rate increased by 25% and 18%, respectively. The application range of the immobilized enzyme in terms of temperature and pH was larger than that of the free enzyme, and its thermal stability increased. The immobilized enzyme was used in enzymatic hydrolysis, in which MCC was used as the substrate. The optimal conditions for enzymatic hydrolysis were as follows: the dosage of SA-PEG-immobilized cellulase was 3.55 g/g total solids of the substrate, the concentration of the substrate was 13.16%, and the pH was 5.11. In comparison with the yield of reducing sugars in the first round of hydrolysis of MCC by SA-immobilized cellulase, the yield in the hydrolysis of MCC by SA-PEG-immobilized cellulase increased by 133%. After five cycles of repeated use, the total yield of reducing sugars when MCC was hydrolyzed by SA-PEG-immobilized cellulase was similar to that achieved with free cellulase. In comparison with the free enzyme, the highest yield when the immobilized enzyme was used was 22.68%. Therefore, the immobilized cellulase exhibited high performance in enzymatic hydrolysis.
Collapse
Affiliation(s)
- Rongxin Guo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xusheng Zheng
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiwen Yang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifang Ma
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dexun Zou
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanping Liu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
6
|
Sui Y, Cui Y, Xia G, Peng X, Yuan G, Sun G. A facile route to preparation of immobilized cellulase on polyurea microspheres for improving catalytic activity and stability. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Xue D, Zeng X, Lin D, Yao S. Thermostable ethanol tolerant xylanase from a cold-adapted marine species Acinetobacter johnsonii. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Xue D, Zeng X, Gong C, Lin D, Yao S. A cold adapt and ethanol tolerant endoglucanase from a marine Bacillus subtilis. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Ethanol tolerant endoglucanase from Aspergillus niger isolated from wine fermentation cellar. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Trincone A. Update on Marine Carbohydrate Hydrolyzing Enzymes: Biotechnological Applications. Molecules 2018; 23:E901. [PMID: 29652849 PMCID: PMC6017418 DOI: 10.3390/molecules23040901] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
After generating much interest in the past as an aid in solving structural problems for complex molecules such as polysaccharides, carbohydrate-hydrolyzing enzymes of marine origin still appear as interesting biocatalysts for a range of useful applications in strong interdisciplinary fields such as green chemistry and similar domains. The multifaceted fields in which these enzymes are of interest and the scarce number of original articles in literature prompted us to provide the specialized analysis here reported. General considerations from modern (2016-2017 interval time) review articles are at start of this manuscript; then it is subsequently organized in sections according to particular biopolymers and original research articles are discussed. Literature sources like the Science Direct database with an optimized W/in search, and the Espacenet patent database were used.
Collapse
Affiliation(s)
- Antonio Trincone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| |
Collapse
|