1
|
Huiliñir C, Pagés-Díaz J, Vargas G, Vega S, Lauzurique Y, Palominos N. Microaerobic condition as pretreatment for improving anaerobic digestion: A review. BIORESOURCE TECHNOLOGY 2023:129249. [PMID: 37268090 DOI: 10.1016/j.biortech.2023.129249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Pretreatment of waste before anaerobic digestion (AD) has been extensively studied during the last decades. One of the biological pretreatments studied is the microaeration. This review examines this process, including parameters and applications to different substrates at the lab, pilot and industrial scales, to guide further improvement in large-scale applications. The underlying mechanisms of accelerating hydrolysis and its effects on microbial diversity and enzymatic production were reviewed. In addition, modelling of the process and energetic and financial analysis is presented, showing that microaerobic pretreatment is commercially attractive under certain conditions. Finally, challenges and future perspectives were also highlighted to promote the development of microaeration as a pretreatment before AD.
Collapse
Affiliation(s)
- César Huiliñir
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago de Chile, Chile.
| | - Jhosané Pagés-Díaz
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago de Chile, Chile
| | - Gustavo Vargas
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago de Chile, Chile
| | - Sylvana Vega
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago de Chile, Chile
| | - Yeney Lauzurique
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago de Chile, Chile
| | - Nicolás Palominos
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago de Chile, Chile
| |
Collapse
|
2
|
Wang X, Jiang C, Wang H, Xu S, Zhuang X. Strategies for energy conversion from sludge to methane through pretreatment coupled anaerobic digestion: Potential energy loss or gain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117033. [PMID: 36603247 DOI: 10.1016/j.jenvman.2022.117033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) of wasted activated sludge from wastewater plants is recognized as an effective method to reclaim energy in the form of methane. AD performance has been enhanced by coupling various pretreatments that impact energy conversion from sludge. This paper mainly reviewed the development of pretreatments based on different technologies reported in recent years and evaluated their energy benefit. Significant increases in methane yield are generally obtained in AD with pretreatments demanding energy input, including thermal- and ultrasound-based methods. However, these energy-intense pretreatments usually gained negative energy benefit that the increase in methane yield consumed extra energy input. The unbalanced relationship counts against the goal of energy reclamation from sludge. Combined pretreatment consisting of multiple technologies normally outcompetes the single pretreatment, and the combination of energy-intense methods and chemicals potentially reduces energy input and simultaneously ensure high methane yield. For determining whether the energy reclamation from sludge via AD contribute to mitigating global warming, integrating greenhouse gas emission into the evaluation system of pretreated AD is further warranted.
Collapse
Affiliation(s)
- Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huacai Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; The Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Self-Aggregation and Denitrifying Strains Accelerate Granulation and Enhance Denitrification. WATER 2022. [DOI: 10.3390/w14091482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A long start-up period is one of the main factors limiting the practical application of aerobic granular sludge (AGS). Bioaugmentation could be a good strategy to accelerate aerobic granulation. In this research, four denitrifying strains were isolated from mature AGS. Mycobacterium senegalense X3-1 exhibited the strongest self-aggregation ability and good denitrification ability. Ensifer adhaerens X1 showed the strongest denitrification ability but poor self-aggregation ability. Additionally, strain X3-1 demonstrated the highest extracellular polymeric substances (EPS) contents accompanied by relatively high N-acyl-homoserine lactones (AHLs) concentrations, which could illustrate its predominant aggregation ability—AHLs produced by bacteria regulate EPS secretion to accelerate cell aggregation. Strain X3-1 and X1 were chosen as inoculated bacterium to verify the effects of bioaugmentation on AGS granulation and denitrification. Granulation was achieved in the sequential batch reactors (SBRs) added strain X3-1 10 days earlier than the control group. The particle morphology and TIN removal rate of X3-1 were both superior to the latter. The introduction of strains reduced the richness and diversity of the microbial community, but the key functional bacteria, Candidatus_Competibacter, proliferates in the SBR inoculated with X3-1. Conclusively, it is suggested Mycobacterium senegalense X31 could be a prospective strain for enhancing AGS formation and denitrification.
Collapse
|
4
|
The Measurement, Application and Effect of Oxygen in Microbial Fermentations: Focusing on Methane and Carboxylate Production. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxygen is considered detrimental to anaerobic fermentation processes by many practitioners. However, deliberate oxygen sparging has been used successfully for decades to remove H2S in anaerobic digestion (AD) systems. Moreover, microaeration techniques during AD have shown that small doses of oxygen may enhance process performance and promote the in situ degradation of recalcitrant compounds. However, existing oxygen dosing techniques are imprecise, which has led to inconsistent results between studies. At the same time, real-time oxygen fluxes cannot be reliably quantified due to the complexity of most bioreactor systems. Thus, there is a pressing need for robust monitoring and process control in applications where oxygen serves as an operating parameter or an experimental variable. This review summarizes and evaluates the available methodologies for oxygen measurement and dosing as they pertain to anaerobic microbiomes. The historical use of (micro-)aeration in anaerobic digestion and its potential role in other anaerobic fermentation processes are critiqued in detail. This critique also provides insights into the effects of oxygen on these microbiomes. Our assessment suggests that oxygen dosing, when implemented in a controlled and quantifiable manner, could serve as an effective tool for bioprocess engineers to further manipulate anaerobic microbiomes for either bioenergy or biochemical production.
Collapse
|
5
|
Ortiz-Ardila AE, Díez B, Celis C, Jenicek P, Labatut R. Microaerobic conditions in anaerobic sludge promote changes in bacterial composition favouring biodegradation of polymeric siloxanes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1182-1197. [PMID: 34302159 DOI: 10.1039/d1em00143d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Volatile organic silicon compounds (VOSiC) are harmful pollutants to the biota and ecological dynamics as well as biogas-based energy conversion systems. However, there is a lack of understanding regarding the source of VOSiCs in biogas, especially arising from the biochemical conversion of siloxane polymers such as polydimethylsiloxanes (PDMS). The biodegradation of PDMS was evaluated under anaerobic/microaerobic conditions (PO2 = 0, 1, 3, 5%), using wastewater treatment plant (WWTP) sludge as an inoculum and PDMS as a co-substrate (0, 50, 100, 500 ppm). On average, strictly anaerobic treatments produced significantly less methane than the 3 and 5% microaerated ones, which show the highest PMDS biodegradation at 50 ppm. Thauera sp. and Rhodococcus sp. related phylotypes were identified as the most abundant bacterial groups in microaerated treatments, and siloxane-related molecules were identified as remnants of PDMS catabolism. Our study demonstrates that microaeration promotes changes to the native bacterial community which favour the biological degradation of PDMS. This confirms that the presence of VOSiC (e.g., D4-D6) in biogas is not only due to its direct input in wastewaters, but also to the PDMS microbial catabolism. Microaerobic conditions enhance both PDMS and (subsequent) VOSiC degradation in the liquid phase, increasing the concentrations of D4 and D5 in biogas, and the production of less toxic siloxane-based derivatives in the liquid phase. This study suggests that microaeration of the anaerobic sludge can significantly decrease the concentration of PDMSs in the WWTP effluent. However, for WWTPs to become effective barriers for the emission of these ecotoxic contaminants to the environment, such a strategy needs to be coupled with an efficient biodegradation of VOSiCs from the biogas.
Collapse
Affiliation(s)
- A E Ortiz-Ardila
- Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
6
|
Luo J, Zhu Y, Zhang Q, Cao M, Guo W, Li H, Wu Y, Wang H, Su Y, Cao J. Promotion of short-chain fatty acids production and fermented sludge properties via persulfate treatments with different activators: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2020; 295:122278. [PMID: 31669867 DOI: 10.1016/j.biortech.2019.122278] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
This study explored the influences of peroxydisulfate (PDS) and peroxymonosulfate (PMS) activated with different catalysts on the anaerobic fermentation of waste activated sludge (WAS). All the treatments were effective in promoting short-chain fatty acids (SCFAs) production, particularly acetic acid, in the order of PMS/MnO2 > PMS/Zn > PDS/Zn > PMS/Fe > PDS/Fe > PDS/MnO2. Mechanistic investigations demonstrated that WAS disintegration was intensely induced by the free radicals (i.e., SO4- and OH) generated in PDS and PMS treating reactors. It significantly promoted the solubilization and hydrolysis processes and thereby provided sufficient bioavailable substrates for further acidogenic metabolisms. Additionally, it enlarged the abundance of functional bacteria responsible for SCFAs production. The simultaneous promotion of bioavailable substrates and fermentative microorganisms markedly contributed to the SCFAs enhancement. Moreover, the dewaterability and stabilization of fermented sludge were both improved with the PDS and PMS treatments, which were beneficial to the final disposal of WAS.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Ying Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Miao Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wen Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Han Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hui Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yinglong Su
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
7
|
Ruan D, Zhou Z, Pang H, Yao J, Chen G, Qiu Z. Enhancing methane production of anaerobic sludge digestion by microaeration: Enzyme activity stimulation, semi-continuous reactor validation and microbial community analysis. BIORESOURCE TECHNOLOGY 2019; 289:121643. [PMID: 31228743 DOI: 10.1016/j.biortech.2019.121643] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Effects of microaeration pretreatment on sludge hydrolysis, biogas production and microbial community structure in anaerobic digestion (AD) were investigated by bench-scale tests and semi-continuous experiments. Bench tests showed that microaeration led to the release of dissolved organic matters, generation of volatile fatty acids and stimulation of enzyme activity. Correlation analysis showed that methane production was significantly correlated with the activity of α-glucosidase at 0.01 level, and with protease activity, released polysaccharides and VFAs at 0.05 level. Semi-continuous experiments showed that microaeration accelerated the utilization of organic matters, increased biogas production by 16.4%, enhanced methane content in biogas, and improved sludge dewaterability. Microbial community structure analysis showed that microaeration promoted enrichment of hydrolytic and fermentative bacteria in AD reactor rather than methanogenic bacteria, and aceticlastic methanogenesis was the main methanogenic pathway for methane production.
Collapse
Affiliation(s)
- Danian Ruan
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Hongjian Pang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jie Yao
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Guang Chen
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Zhan Qiu
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| |
Collapse
|
8
|
Luo J, Zhang Q, Wu L, Feng Q, Fang F, Xue Z, Li C, Cao J. Improving anaerobic fermentation of waste activated sludge using iron activated persulfate treatment. BIORESOURCE TECHNOLOGY 2018; 268:68-76. [PMID: 30075331 DOI: 10.1016/j.biortech.2018.06.080] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 05/16/2023]
Abstract
This study reported a novel and efficient approach to improve the anaerobic fermentation performance of waste activated sludge (WAS) by the indigenous iron activated persulfate (PS/Fe) treatment. Firstly, the production of short-chain fatty acids (SCFAs), especially acetic acid, was remarkably enhanced within shorter fermentation time. Mechanism investigations demonstrated that the PS/Fe treatment could simultaneously accelerate and enhance the hydrolysis and acidification process while inhibit the methanogenesis during WAS fermentation. The activities of key enzymes and the abundances of anaerobic microorganisms responsible for SCFAs production were stimulated in the presence of PS/Fe which would promote the biological processes. Secondly, the PS/Fe treatment improved the quality of fermentation residue by reducing the toxic organic compounds in the residue and enhancing the dewaterability of fermented sludge, which was beneficial to the final disposal of WAS with added economical and environmental values.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Lijuan Wu
- Jiangsu Provincial Academy of Environmental Science, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhaoxia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|