1
|
Sonkar R, Gade PS, Mudliar SN, Bhatt P. Green Downstream Processing Method for Xylooligosaccharide Purification and Assessment of Its Prebiotic Properties. ACS OMEGA 2023; 8:42815-42826. [PMID: 38024717 PMCID: PMC10652722 DOI: 10.1021/acsomega.3c05714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Xylooligosaccharides (XOS) obtained from lignocellulosic biomass after autohydrolysis primarily consist of lignin-derived impurities and autogenerated inhibitors like furfural, hydroxymethylfurfural, and acetic acid. In this study, graphene oxide-mediated purification (GOMP), a novel and environmentally friendly downstream processing method, was developed for the purification of XOS from hydrolysate obtained after ozone-assisted autohydrolysis of wheat bran. GOMP resulted in appreciable recovery of total XOS from the hydrolysate (73.87 ± 4.25%, DP2-6) with near complete removal of autogenerated inhibitors (furfural 85.42%, HMF 87.38%, and acetic acid 84.0%). Recovery of XOS by GOMP was higher than the conventional membrane purification technique (44.07 ± 0.92%) and activated charcoal treatment (72.76 ± 0.84%) along with comparatively higher removal of inhibitor compounds. GOMP results in the selective adsorption of inhibitors on the graphene oxide matrix from the XOS-rich hydrolysate, resulting in its purification and concentration. The prebiotic function of the obtained XOS fractions (DP2-4.48%, DP3-39.69%, DP4-36.13%, DP5-8.38%, and DP6-13.10%) was evaluated, indicating the growth stimulation of tested probiotic cultures and differential utilization of XOS oligomers DP3 and DP4 and complete consumption of DP2, DP5, and DP6 along with short-chain fatty acids as a major fermentation product. These findings suggest that GOMP, which employs a common substance (i.e., graphene oxide) used in water treatment, exhibits potential as an efficient and economically viable single-step methodology for XOS purification.
Collapse
Affiliation(s)
- Rutuja
Murlidhar Sonkar
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Microbiology
and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Pravin Savata Gade
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Microbiology
and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Sandeep N. Mudliar
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Plant
Cell Biotechnology Department, CSIR-Central
Food Technological Research Institute, Mysore 570020, India
| | - Praveena Bhatt
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Microbiology
and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| |
Collapse
|
2
|
Zhao Y, Li X, Guo S, Xu J, Cui Y, Zheng M, Liu J. Thermodynamics and Physicochemical Properties of Immobilized Maleic Anhydride-Modified Xylanase and Its Application in the Extraction of Oligosaccharides from Wheat Bran. Foods 2023; 12:2424. [PMID: 37372634 DOI: 10.3390/foods12122424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Xylanases are the preferred enzymes for the extracting of oligosaccharides from wheat bran. However, free xylanases have poor stability and are difficult to reuse, which limit their industrial application. In the present study, we covalently immobilized free maleic anhydride-modified xylanase (FMA-XY) to improve its reusability and stability. The immobilized maleic anhydride-modified xylanase (IMA-XY) exhibited better stability compared with the free enzyme. After six repeated uses, 52.24% of the activity of the immobilized enzyme remained. The wheat bran oligosaccharides extracted using IMA-XY were mainly xylopentoses, xylohexoses, and xyloheptoses, which were the β-configurational units and α-configurational units of xylose. The oligosaccharides also exhibited good antioxidant properties. The results indicated that FMA-XY can easily be recycled and can remain stable after immobilization; therefore, it has good prospects for future industrial applications.
Collapse
Affiliation(s)
- Yang Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Xinrui Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Shuo Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingwen Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Yan Cui
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
3
|
De Wever P, De Schepper C, Poleunis C, Delcorte A, Courtin CM, Fardim P. Topochemical Design of Cellulose-Based Carriers for Immobilization of Endoxylanase. Biomacromolecules 2023; 24:132-140. [PMID: 36542490 DOI: 10.1021/acs.biomac.2c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Xylooligosaccharides (XOSs) gained much attention for their use in food and animal feed, attributed to their prebiotic function. These short-chained carbohydrates can be enzymatically produced from xylan, one of the most prevalent forms of hemicellulose. In this work, endo-1,4-β-xylanase from Thermotoga maritima was immobilized on cellulose-based beads with the goal of producing xylooligosaccharides with degrees of polymerization (DPs) in the range of 4-6 monomeric units. More specifically, the impact of different spacer arms, tethers connecting the enzyme with the particle, on the expressed enzymatic activity and oligosaccharide yield was investigated. After surface functionalization of the cellulose beads, the presence of amines was confirmed with time of flight secondary ion mass spectrometry (TOF-SIMS), and the influence of different spacer arms on xylanase activity was established. Furthermore, XOSs (DPs 2-6) with up to 58.27 mg/g xylan were obtained, which were greatly enriched in longer oligosaccharides. Approximately 80% of these XOSs displayed DPs between 4 and 6. These findings highlight the importance of topochemical engineering of carriers to influence enzyme activity, and the work puts forward an enzymatic system focusing on the production of longer xylooligosaccharides.
Collapse
Affiliation(s)
- Pieter De Wever
- Chemical and Biochemical Reactor Engineering and Safety Section, Department of Chemical engineering, KU Leuven, Celestijnenlaan 200f, P.O. Box 2424, 3001Leuven, Belgium
| | - Charlotte De Schepper
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20,3001Leuven, Belgium
| | - Claude Poleunis
- Institute of Condensed Matter and Nanosciences, UCLouvain, Place Louis Pasteur 1, Box L4.01.10, 1348Louvain-la-Neuve, Belgium
| | - Arnaud Delcorte
- Institute of Condensed Matter and Nanosciences, UCLouvain, Place Louis Pasteur 1, Box L4.01.10, 1348Louvain-la-Neuve, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20,3001Leuven, Belgium
| | - Pedro Fardim
- Chemical and Biochemical Reactor Engineering and Safety Section, Department of Chemical engineering, KU Leuven, Celestijnenlaan 200f, P.O. Box 2424, 3001Leuven, Belgium
| |
Collapse
|
4
|
Immobilization and Application of the Recombinant Xylanase GH10 of Malbranchea pulchella in the Production of Xylooligosaccharides from Hydrothermal Liquor of the Eucalyptus ( Eucalyptus grandis) Wood Chips. Int J Mol Sci 2022; 23:ijms232113329. [PMID: 36362138 PMCID: PMC9656307 DOI: 10.3390/ijms232113329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Xylooligosaccharides (XOS) are widely used in the food industry as prebiotic components. XOS with high purity are required for practical prebiotic function and other biological benefits, such as antioxidant and inflammatory properties. In this work, we immobilized the recombinant endo-1,4-β-xylanase of Malbranchea pulchella (MpXyn10) in various chemical supports and evaluated its potential to produce xylooligosaccharides (XOS) from hydrothermal liquor of eucalyptus wood chips. Values >90% of immobilization yields were achieved from amino-activated supports for 120 min. The highest recovery values were found on Purolite (142%) and MANAE-MpXyn10 (137%) derivatives, which maintained more than 90% residual activity for 24 h at 70 °C, while the free-MpXyn10 maintained only 11%. In addition, active MpXyn10 derivatives were stable in the range of pH 4.0−6.0 and the presence of the furfural and HMF compounds. MpXyn10 derivatives were tested to produce XOS from xylan of various sources. Maximum values were observed for birchwood xylan at 8.6 mg mL−1 and wheat arabinoxylan at 8.9 mg mL−1, using Purolite-MpXyn10. Its derivative was also successfully applied in the hydrolysis of soluble xylan present in hydrothermal liquor, with 0.9 mg mL−1 of XOS after 3 h at 50 °C. This derivative maintained more than 80% XOS yield after six cycles of the assay. The results obtained provide a basis for the application of immobilized MpXyn10 to produce XOS with high purity and other high-value-added products in the lignocellulosic biorefinery field.
Collapse
|
5
|
Gupta M, Bangotra R, Sharma S, Vaid S, Kapoor N, Dutt HC, Bajaj BK. Bioprocess development for production of xylooligosaccharides prebiotics from sugarcane bagasse with high bioactivity potential. INDUSTRIAL CROPS AND PRODUCTS 2022; 178:114591. [DOI: 10.1016/j.indcrop.2022.114591] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Teng C, Tang H, Li X, Zhu Y, Fan G, Yang R. Production of xylo-oligosaccharides using a Streptomyces rochei xylanase immobilized on Eudragit S-100. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1964483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Huihua Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yunping Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Guangsen Fan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Ran Yang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
7
|
Li Q, Jiang Y, Tong X, Zhao L, Pei J. Co-production of Xylooligosaccharides and Xylose From Poplar Sawdust by Recombinant Endo-1,4-β-Xylanase and β-Xylosidase Mixture Hydrolysis. Front Bioeng Biotechnol 2021; 8:637397. [PMID: 33598452 PMCID: PMC7882696 DOI: 10.3389/fbioe.2020.637397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022] Open
Abstract
As is well-known, endo-1,4-β-xylanase and β-xylosidase are the rate-limiting enzymes in the degradation of xylan (the major hemicellulosic component), main functions of which are cleavaging xylan to release xylooligosaccharides (XOS) and xylose that these two compounds have important application value in fuel, food, and other industries. This study focuses on enzymatic hydrolysis of poplar sawdust xylan for production of XOS and xylose by a GH11 endo-1,4-β-xylanase MxynB-8 and a GH39 β-xylosidase Xln-DT. MxynB-8 showed excellent ability to hydrolyze hemicellulose of broadleaf plants, such as poplar. Under optimized conditions (50°C, pH 6.0, dosage of 500 U/g, substrate concentration of 2 mg/mL), the final XOS yield was 85.5%, and the content of XOS2-3 reached 93.9% after 18 h. The enzymatic efficiency by MxynB-8 based on the poplar sawdust xylan in the raw material was 30.5%. Xln-DT showed excellent xylose/glucose/arabinose tolerance, which is applied as a candidate to apply in degradation of hemicellulose. In addition, the process and enzymatic mode of poplar sawdust xylan with MxynB-8 and Xln-DT were investigated. The results showed that the enzymatic hydrolysis yield of poplar sawdust xylan was improved by adding Xln-DT, and a xylose-rich hydrolysate could be obtained at high purity, with the xylose yield of 89.9%. The enzymatic hydrolysis yield was higher (32.2%) by using MxynB-8 and Xln-DT together. This study provides a deep understanding of double-enzyme synergetic enzymolysis of wood polysaccharides to valuable products.
Collapse
Affiliation(s)
- Qi Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yunpeng Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyi Tong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Linguo Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
8
|
Martins de Oliveira S, Velasco-Lozano S, Orrego AH, Rocha-Martín J, Moreno-Pérez S, Fraile JM, López-Gallego F, Guisán JM. Functionalization of Porous Cellulose with Glyoxyl Groups as a Carrier for Enzyme Immobilization and Stabilization. Biomacromolecules 2021; 22:927-937. [PMID: 33423456 DOI: 10.1021/acs.biomac.0c01608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The functionalization of the internal surface of macroporous carriers with glyoxyl groups has proven to highly stabilize a large variety of enzymes through multipoint covalent immobilization. In this work, we have translated the surface chemistry developed for the fabrication of glyoxyl-agarose carriers to macroporous cellulose (CEL). To that aim, CEL-based microbeads were functionalized with glyoxyl groups through a stepwise alkoxylation (or alkylation)/oxidation synthetic scheme. This functionalization sequence was analyzed by solid-state NMR, while the scanning electron miscroscopy of CEL microbeads reveals that the mild oxidation conditions negligibly affect the morphological properties of the material. Through the optimal functionalization protocol using rac-glycidol, we introduce up to 200 μmols of aldehyde groups per gram of wet CEL, a similar density to the one obtained for the benchmarked agarose-glyoxyl carrier. This novel CEL-based carrier succeeds to immobilize and stabilize industrially relevant enzymes such as d-amino acid oxidase from Trigonopsis variabilis and xylanases from Trichoderma reseei. Remarkably, the xylanases immobilized on the optimal CEL-based materials present a half-life time of 51 h at 60 °C and convert up to 90% of the xylan after four operation cycles for the synthesis of xylooligosaccharides.
Collapse
Affiliation(s)
- Sandro Martins de Oliveira
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, Madrid 28049, Spain
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia San Sebastián, Spain
| | - Alejandro H Orrego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, Madrid 28049, Spain
| | - Javier Rocha-Martín
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, Madrid 28049, Spain
| | - Sonia Moreno-Pérez
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, Madrid 28049, Spain
| | - José M Fraile
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-University of Zaragoza, Pedro Cerbuna, 12, Zaragoza, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Jose Manuel Guisán
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
9
|
Corradini FAS, Milessi TS, Gonçalves VM, Ruller R, Sargo CR, Lopes LA, Zangirolami TC, Tardioli PW, Giordano RC, Giordano RLC. High stabilization and hyperactivation of a Recombinant β-Xylosidase through Immobilization Strategies. Enzyme Microb Technol 2020; 145:109725. [PMID: 33750534 DOI: 10.1016/j.enzmictec.2020.109725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/15/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Attainment of a stable and highly active β-xylosidase is of major importance for the efficient and cost-competitive hydrolysis of hemicellulose xylan, as well as for its industrial conversion into biofuels and biochemicals. Here, a recombinant β-xylosidase of the glycoside hydrolase family (GH43) from Bacillus subtilis was produced in Escherichia coli culture, purified, and subsequently immobilized on agarose and chitosan. Glutaraldehyde and glyoxyl groups were evaluated as activating agents to select the most efficient derivative. Multi-point immobilization on agarose led to an extraordinary thermal stability (half-lives 3604 and 164-fold higher than the free enzyme, at 50° and 35 °C, respectively). Even for chitosan activated with glutaraldehyde, a low-cost support, thermal stability of the immobilized enzyme was 326 and 12-fold higher than the free enzyme at 50° and 35°C, respectively. Immobilized enzymes showed no release of any subunit for the agarose-glyoxyl derivative, and only a few ones for the support activated with glutaraldehyde. Most remarkably, the enzyme kinetic behavior after immobilization increased up to 4-fold in relation to the free one. β-xylosidase, a tetrameric enzyme with four identical subunits, exists in equilibrium between the monomeric and oligomeric forms in solution. Depending on the pH of immobilization, the enzyme oligomerization can be favored, thus explaining the hyperactivation phenomenon. Both glyoxyl-agarose and chitosan-glutaraldehyde derivatives were used to catalyze corncob xylan hydrolysis, reaching 72 % conversion, representing a xylose productivity of around 20 g L-1 h-1. After ten 4h-cycles (pH 6.0, 35 °C), the xylan-to-xylose conversion remained approximately unchanged. Therefore, the immobilized β-xylosidases prepared in this work can be of great interest as biocatalysts in a biorefinery context.
Collapse
Affiliation(s)
- Felipe A S Corradini
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Thais S Milessi
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Institute of Natural Resources, Federal University of Itajubá, Av. BPS, 1300, 37500-903, Itajubá, MG, Brazil
| | - Viviane M Gonçalves
- Laboratory of Vaccine Development, Butantan Institute, Av Vital Brasil 1500, 05503-900, São Paulo, SP, Brazil
| | - Roberto Ruller
- General Biochemistry and Microorganism Laboratory, Bioscience Institute, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/n, 79070-900, Campo Grande, MS, Brazil
| | - Cíntia R Sargo
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| | - Laiane A Lopes
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Teresa C Zangirolami
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Paulo W Tardioli
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Roberto C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Raquel L C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
10
|
Wu JQ, Xu XM, Wang DL, Long NB, Zhang RF. Immobilization of phospholipase D on macroporous SiO 2/cationic polymer nano-composited support for the highly efficient synthesis of phosphatidylserine. Enzyme Microb Technol 2020; 142:109696. [PMID: 33220874 DOI: 10.1016/j.enzmictec.2020.109696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/26/2022]
Abstract
Novel nano-composites were prepared by coating epoxy resin-based cationic polymer in nano-thickness via in-situ curing on the nano-wall of macroporous SiO2 with pore size of 0.5∼1 μm. By changing the thickness of polymer coating the specific surface area and porosity varied in range of 115∼74 m2/g and 90.4∼83.9 %, respectively. Through ion exchange phospholipase D (PLD, from Streptomyces sp) was efficiently immobilized on the nano-composites as support and the immobilized PLD was applied for the highly efficient synthesis of phosphatidylserine (PS). The loading amount of PLD on the nano-composited support reached to a maximum of 90.2 mg/gsupport, 4 times as high as that on the pure macroporous silica. The specific activity of the immobilized PLD reached as high as 16,230 U/gprotein, while that of free PLD was 18,780 U/gprotein. Under a wide range of temperature and pH the stability and activity of the immobilized PLD were greatly improved as compared with the free ones. Under optimized conditions at 45 °C and pH 7.0, the PS yield reached as high as 96.2 % within 40 min. After 28 days storage the immobilized PLD retained 82.2 % of original activity, and after 12 cycling reuses it retained 79.3 % of PS yield, which indicated that the immobilized PLD exhibited good stability.
Collapse
Affiliation(s)
- Jia-Qin Wu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Xiao-Mei Xu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Ding-Lin Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Neng-Bing Long
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Rui-Feng Zhang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
| |
Collapse
|
11
|
García-García P, Guisan JM, Fernandez-Lorente G. A mild intensity of the enzyme-support multi-point attachment promotes the optimal stabilization of mesophilic multimeric enzymes: Amine oxidase from Pisum sativum. J Biotechnol 2020; 318:39-44. [PMID: 32413366 DOI: 10.1016/j.jbiotec.2020.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022]
Abstract
Stabilization of dimeric enzymes requires the stabilization of the quaternary structure as well as the 3D one. Both subunits may be easily immobilized on a highly activated support. Additional stabilization of the 3D structure may be achieved via multipoint covalent attachment (MCA) on highly activated supports. In the case of monomeric enzymes or thermophilic dimeric ones, the optimal stabilization is obtained via the most intense MCA and it is associated to a small loss of catalytic activity. However, in the case of mesophilic enzymes, a very intense MCA of both subunits may promote negative effects, e.g., associated to distortions of the assembly between subunits and a subsequent very important loss of catalytic activity. A dimeric mesophilic amine oxidase from P.sativum was stabilized by MCA on glyoxyl-agarose. Both subunits were covalently immobilized on the support through the region with the highest density in Lys residues. In addition to that, an interesting activity/stabilization binomial was obtained after only 3 h of enzyme-support multiinteraction (50 % of activity/350 fold stabilization). However, after 24 h of enzyme-support multi-interaction this binomial activity-stabilization decreased down to 30/150. A moderate multiinteraction seems to be the optimal strategy for immobilization-stabilization of mesophilic dimeric enzymes and it promotes moderate losses of activity and interesting stabilizations against the combined effect of heat, acid pH and ethanol. The control of the intensity of enzyme-support multi-interactions becomes now strictly necessary.
Collapse
Affiliation(s)
- Paz García-García
- Laboratory of Microbiology and Food Biocatalysis, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9. UAM Campus, Cantoblanco, 28049, Madrid, Spain
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP, CSIC), Marie Curie, 2. UAM Campus, Cantoblanco, 28049, Madrid, Spain.
| | - Gloria Fernandez-Lorente
- Laboratory of Microbiology and Food Biocatalysis, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9. UAM Campus, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
12
|
Urbano BF, Bustamante S, Palacio DA, Vera M, Rivas BL. Polymer supports for the removal and degradation of hazardous organic pollutants: an overview. POLYM INT 2020. [DOI: 10.1002/pi.5961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Saúl Bustamante
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Daniel A Palacio
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Bernabé L Rivas
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| |
Collapse
|
13
|
Abdul Wahab MKH, El-Enshasy HA, Bakar FDA, Murad AMA, Jahim JM, Illias RM. Improvement of cross-linking and stability on cross-linked enzyme aggregate (CLEA)-xylanase by protein surface engineering. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Wu B, Yu Q, Chang S, Pedroso MM, Gao Z, He B, Schenk G. Expansin assisted bio-affinity immobilization of endoxylanase from Bacillus subtilis onto corncob residue: Characterization and efficient production of xylooligosaccharides. Food Chem 2019; 282:101-108. [DOI: 10.1016/j.foodchem.2019.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/13/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023]
|
15
|
Romero-Fernández M, Moreno-Perez S, H Orrego A, Martins de Oliveira S, I Santamaría R, Díaz M, Guisan JM, Rocha-Martin J. Designing continuous flow reaction of xylan hydrolysis for xylooligosaccharides production in packed-bed reactors using xylanase immobilized on methacrylic polymer-based supports. BIORESOURCE TECHNOLOGY 2018; 266:249-258. [PMID: 29982045 DOI: 10.1016/j.biortech.2018.06.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The present study focuses on the development and optimization of a packed-bed reactor (PBR) for continuous production of xylooligosaccharides (XOS) from xylan. For this purpose, three different methacrylic polymer-based supports (Relizyme R403/S, Purolite P8204F and Purolite P8215F) activated with glyoxyl groups were morphologically characterized and screened for the multipoint covalent immobilization of a xylanase. Based on its physical and mechanical properties, maximum protein loading and thermal stability, Relizyme R403/S was selected to set up a PRB for continuous production of XOS from corncob xylan. The specific productivity for XOS at 10 mL/min flow rate was 3277 gXOS genzyme-1 h-1 with a PBR. This PBR conserved >90% of its initial activity after 120 h of continuous operation.
Collapse
Affiliation(s)
- Maria Romero-Fernández
- Department of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP), CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Sonia Moreno-Perez
- Department of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP), CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain; Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea, Madrid, Spain
| | - Alejandro H Orrego
- Department of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP), CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Sandro Martins de Oliveira
- Department of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP), CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Ramón I Santamaría
- Biología Funcional y Genómica (IBFG), Departamento de Microbiología y Genética, CSIC-USAL, Salamanca, Spain
| | - Margarita Díaz
- Biología Funcional y Genómica (IBFG), Departamento de Microbiología y Genética, CSIC-USAL, Salamanca, Spain
| | - Jose M Guisan
- Department of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP), CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP), CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
16
|
Romero-Fernández M, Moreno-Perez S, Martins de Oliveira S, Santamaría RI, Guisan JM, Rocha-Martin J. Preparation of a robust immobilized biocatalyst of β-1,4-endoxylanase by surface coating with polymers for production of xylooligosaccharides from different xylan sources. N Biotechnol 2018; 44:50-58. [DOI: 10.1016/j.nbt.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
|
17
|
Stabilization of Enzymes by Multipoint Covalent Attachment on Aldehyde-Supports: 2-Picoline Borane as an Alternative Reducing Agent. Catalysts 2018. [DOI: 10.3390/catal8080333] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enzyme immobilization by multipoint covalent attachment on supports activated with aliphatic aldehyde groups (e.g., glyoxyl agarose) has proven to be an excellent immobilization technique for enzyme stabilization. Borohydride reduction of immobilized enzymes is necessary to convert enzyme–support linkages into stable secondary amino groups and to convert the remaining aldehyde groups on the support into hydroxy groups. However, the use of borohydride can adversely affect the structure–activity of some immobilized enzymes. For this reason, 2-picoline borane is proposed here as an alternative milder reducing agent, especially, for those enzymes sensitive to borohydride reduction. The immobilization-stabilization parameters of five enzymes from different sources and nature (from monomeric to multimeric enzymes) were compared with those obtained by conventional methodology. The most interesting results were obtained for bacterial (R)-mandelate dehydrogenase (ManDH). Immobilized ManDH reduced with borohydride almost completely lost its catalytic activity (1.5% of expressed activity). In contrast, using 2-picoline borane and blocking the remaining aldehyde groups on the support with glycine allowed for a conjugate with a significant activity of 19.5%. This improved biocatalyst was 357-fold more stable than the soluble enzyme at 50 °C and pH 7. The results show that this alternative methodology can lead to more stable and active biocatalysts.
Collapse
|